Open Access
MATEC Web of Conferences
Volume 38, 2016
UTP-UMP Symposium on Energy Systems 2015 (SES 2015)
Article Number 01001
Number of page(s) 6
Section Thermal Engineering & Energy Conversion
Published online 11 January 2016
  1. Shaharin Anwar Sulaiman, Khairil Ikhwan, Mohd Shahrizal Jasmani., development of gas compressor diagnostic program using knowledge basedmanagement concept Proceedings of the ASME 2013. IMECE.(2013) [Google Scholar]
  2. Meher-Homji, C.B., Boyce, M.P., Lakshminarasimha, A.N., Whitten, J. & Meher-Homji, F.J., ‘Condition Monitoring and Diagnostics Approaches for Advance GasTurbines’, ASME COGEN-TURBO (IGTI), Vol. 8, pp. 347–354 (1993) [Google Scholar]
  3. Ferozkhan Safiyullah, Mohammed Irfan, Aslam Amirahmad., IOSRJMCE. ISSN: 2278-1684 Volume 2, Issue 1, PP 46–50 (2012) [CrossRef] [Google Scholar]
  4. Koza, J.R., (1992) Genetic Programming: On the Programming of Computers by Natural Selection.MIT Press, Cambridge, MA. [Google Scholar]
  5. J. R. Koza, Genetic programming II, The MIT Press, Massachusetts, (1994). [Google Scholar]
  6. Koza, Bennett, Andre, & Keane, GENETIC PROGRAMMING III – Darwinian Invention and Problem Solving, Morgan Kaufmann Publishers, Inc. pp. 1154. (1999). [Google Scholar]
  7. Francone, F., Discipulus Owner’s Manual and Discipulus Tutorials, Register Machine Learning Technologies, Inc. (1998–2000). [Google Scholar]
  8. M. Kovacic, J. Balic and M. Brezocnik, Evolutionary approach for cutting forces prediction, Journal of materials processing technology, 155/156, (2004). [Google Scholar]
  9. H. Kurtaran, B. Ozcelik and T. Erzurumlu, Warpage optimization of a bus ceiling lamp base using neural network model and genetic algorithm, Journal of materials processing technology, 169(2), (2005). [Google Scholar]
  10. Sette S., Boullart L. Genetic programming: principles and applications, Engineering Applications of Artificial Intelligence 14 (2001). [Google Scholar]
  11. Pierreval, H., Caux, C., Paris, J.L., Viguier, F. Evolutionary approaches to the design and organization of manufacturing system, Computers & Industrial Engineering 44 (2003). [Google Scholar]
  12. Gusel, L., Brezocnik, M. Modeling of impact toughness of cold formed material by genetic programming, Comp. Mat. Sc. 37 (2006). [Google Scholar]
  13. Chang, Y.S., Kwang, S.P., Kim, B.Y. Nonlinear model for ECG R-R interval variation using genetic programming approach, Future Generation Computer Systems 21, pp. 1117–1123 (2012). [CrossRef] [Google Scholar]
  14. Brezocnik, M., Gusel, L. Predicting stress distribution in cold formed material with genetic programming, International Journal of Advanced Manufacturing Technology, Vol. 23, pp. 467–474. (2004). [CrossRef] [Google Scholar]
  15. Brezocnik, M., Kovacic, M. and Ficko, M., Prediction of surface roughness with genetic programming, Journal of materials processing technology, 157/158, 28–36. (2004). [CrossRef] [Google Scholar]
  16. M. Brezocnik and M. Kovacic, Integrated genetic programming and genetic algorithm approach to predict surface roughness, Materials and manufacturing processes,18(4) (2003). [Google Scholar]
  17. Mohammed Yunus, J. Fazlur Rahman and S. Ferozkhan, Genetic programming approach for the prediction of thermal characteristics of ceramic coatings, IJIERD, Volume 2 Issue 1, May - October (2011). [Google Scholar]
  18. Mohammed Yunus, J. Fazlur Rahman and S. Ferozkhan, Evaluation of machinability characteristics of industrial ceramic coatings using genetic programming based approach, IJMET, Volume 2, Issue 2, August- December (2011). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.