Open Access
Issue
MATEC Web of Conferences
Volume 26, 2015
2015 3rd Asia Conference on Mechanical and Materials Engineering (ACMME 2015)
Article Number 01007
Number of page(s) 4
Section Advanced materials and properties
DOI https://doi.org/10.1051/matecconf/20152601007
Published online 12 October 2015
  1. Deisinger U, Stenzel F, Ziegler G. Hydroxyapatite ceramics with tailored pore structure [J]. Key Engineering Materials, (2004), 264-268: 2047–2050. [CrossRef] [Google Scholar]
  2. Fleisch H, Russell R G, Francis M D. Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo [J]. Science, (1969), 165: 1262–1264. [CrossRef] [Google Scholar]
  3. Kokubo T, Kim H M, Kawashita M. Novel bioactive materials with different mechanical properties [J]. Biomaterials, (2003), 24(13): 2161–2175. [CrossRef] [PubMed] [Google Scholar]
  4. Sadat-Shojai M, Atai M, Nodehi A, et al. Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives Synthesis and application [J]. Dent Master,(2010),26(5):471–482. [CrossRef] [Google Scholar]
  5. HanYingchao, Li Shipu, WangXinyu. A novel thermolysis method of colloidal protein precursors to prepare hydroxyapatite nanocrystals [J]. Cryst Res Technol, (2009),44(3):336–340. [CrossRef] [Google Scholar]
  6. Kothapalli C, Wei M, Vasilieve A, et al. Influence of temeperature and concentration on the sintering behavior and mechanical properties of hydroxyapatite [J]. Acta Materialia, (2004), 52(19): 5655–5663. [CrossRef] [Google Scholar]
  7. LinRunrong, MaoXuan, YuQicong, et al. Preparation of bioactive nano-hydroxyapatite coating for artificial cornea [J]. Current Aplied Physics,(2007),7(1):85–89. [CrossRef] [Google Scholar]
  8. Fathi M H, Hanifi A, Mortazavi V. Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder [J]. Journal of Materials Processing Technology,(2008),202(1/2/3):536–542. [CrossRef] [Google Scholar]
  9. Joachim Koetz, Kornelia Gawilitza, Sabine Kosmella. Formation of organically and inorganically passivated CdS nanoparticles in reverse microemulsions [J]. Colloid Polym Sci,(2010),288(3):257–263. [CrossRef] [Google Scholar]
  10. Dorozhkin S V. Nanodimensional and nanocrystalline apatites and other calcium orthophosphates in biomedical engineering, biology and medicine [J]. Materials, (2009), 2(4):1975–2045 [CrossRef] [Google Scholar]
  11. MinNaiBen. The physical basis of crystal growth (M). Shanghai science and technology press, 1982:339–372 [Google Scholar]
  12. Kong L B, Ma J, Boey F. Nanosized hydroxyapatite powders derived from coprecipitation process [J]. Journal of Materials Science,2002,37(6):1131–1134 [CrossRef] [Google Scholar]
  13. K. Kandori, N. Horigami, A. Yasukawa et al, Texture and Formation Mechanism of Fibrous Calcium Hydroxyapatite Particles Prepared by Decomposition of Calcium-EDTA Chelates [J]. J Am. Ceram. Soc., 1997, 80(5):1157–1164. [CrossRef] [Google Scholar]
  14. Zhiliang Huang, Dawei Wang, Yu Liu et al. FT-IR Investigation on Crystal Chemistry of Various CO32–Substituted Hydroxyapatite Solid Solutions[J]. Chinese Journal of Inorganic Chemistry, 2002, (5): 469–474. [Google Scholar]
  15. Ager J WIII, Balooch G., Ritchie R O. Fracture, aging, and disease in bone [J]. J Mater Res, 2006, 21 (8): 1878–1892 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.