Open Access
MATEC Web of Conferences
Volume 25, 2015
2015 International Conference on Energy, Materials and Manufacturing Engineering (EMME 2015)
Article Number 02003
Number of page(s) 6
Section Materials Engineering
Published online 06 October 2015
  1. Woo M H, Kim H S. & Lee E. Y. 2012. Development and characterization of recombinant whole cells ex-pressing the soluble epoxide hydrolase of Danio rerio and its variant for enantioselective resolution of racemic styrene oxides. J. Ind. Eng. Chem., 18: 384–391 [CrossRef] [Google Scholar]
  2. S. Easwar. & N.P. Argade. 2003. Amano PS-catalyzed enantioselective acylation of (±)-α-methyl-1, 3-benzodioxole-5-ethanol: an efficient resolution of chiral intermediates of the remarkable antiepileptic drug candidate, (-)-talampanel. Tetrahedron: Asymmetry 14:333–337 [CrossRef] [Google Scholar]
  3. A. Wallner, H. Mang, S.M. Glueck, A. Steinreiber, S.F. Mayer. & K. Faber. 2003. Chemo-enzymatic enan-tio-convergent asymmetric total synthesis of (S)-(+)-dictyoprolene using a kinetic resolution-stereoinversion protocol. Tetrahedron: Asymmetry 14: 2427–2432 [CrossRef] [Google Scholar]
  4. F. Compostella, L. Franchini, G.B. Giovenzana, L. Panza, D. Prosperib. & F. Ronchettia. 2002. Chemo-enzymatic stereo-convergent synthesis of 3-O-benzoyl-azidosphingosine. Tetrahedron: Asymmetry, 13: 867–872 [CrossRef] [Google Scholar]
  5. J. Oshida, M. Okamoto. & S. Azuma. 1999. Chemoen-zymatic synthesis of 1α, 24(R)-dihydroxycholesterol. Tetrahedron: Asymmetry 10: 2337–2342 [CrossRef] [Google Scholar]
  6. A. Kamal, G.B.R. Khanna, R. Ramu. & T. Krishnaji. 2003. Chemoenzymatic synthesis of duloxetine and its enantiomer: lipase-catalyzed resolution of 3-hydroxy-3-(2-thienyl) propanenitrile. Tetrahedron Lett. 44 :4783–4787 [CrossRef] [Google Scholar]
  7. D.R. Boyd, N.D. Sharma. & J. Mol. 2002. Enzymatic and chemoenzymatic synthesis of arene trans- dihydro-diols. Catal. B: Enzymatic 19-20:31–42 [CrossRef] [Google Scholar]
  8. Steinreiber A, Stadler A, Mayer SF., Faber K. & Kappe CO. 2001. High-speed microwave-promoted Mitsunobu inversions. Application toward the deracemization of sulcatol. Tetrahedron Lett. 42: 6283–6286 [CrossRef] [Google Scholar]
  9. P. Virsu, A. Liljeblad, A. Kanerva. & L.T. Kanerva. 2001. Preparation of the enantiomers of 1-phenylethane-1, 2-diol. Regio- and enantioselectivity of acylase I and Candida antarctica lipases A and B. Tetrahedron: Asymmetry 12: 2447–2455 [CrossRef] [Google Scholar]
  10. Thiago S. F., Marcos R.S., Maria CO, Telma L.G.L., Ricardo A.M. & Marcos C. M., 2015, Chemoenzymatic synthesis of rasagiline mesylate using lipases. Appl. Catal. A: General, 492: 76–82 [CrossRef] [Google Scholar]
  11. Zahia H., Mounia M.-K, Nassima B., Olivier R. & Louisa A.-Z. 2013. A green route to enantioenriched (S)-arylalkyl carbinols by deracemization via combined lipase alkaline-hydrolysis/Mitsunobu esterification. Tetrahedron: Asymmetry, 24:290–296 [CrossRef] [Google Scholar]
  12. S.P. Moreau, C. Morisseau, J. Baratti, A. Archelas. & R. Furstoss. 1997. Triplex stability of oligodeoxynucleo-tides containing substituted quinazoline-2, 4-(1H, 3H)-dione. Tetrahedron, 53:8457–8478 [CrossRef] [Google Scholar]
  13. R.V.A. Orru, S.F. Mayer, W. Kroutil. & K. Faber. 1998. Chemoenzymic deracemization of (±)-2,2-disubstituted oxiranes. Tetrahedron, 54:859–874 [CrossRef] [Google Scholar]
  14. E. Vanttinen. & L.T. Kanerva. 1995. Combination of the lipase-catalyzed resolution with the Mitsunobu esterification in one pot. Tetrahedron: Asymmetry, 6:1779–1786 [CrossRef] [Google Scholar]
  15. Wu Y-W., Kong X-D., Zhu Q-Q, Fan L-Q. & Xu J-H. 2015. Chemoenzymatic enantioconvergent hydrolysis of p-nitrostyrene oxide into (R)-p-nitrophenyl glycol by a newly cloned epoxide hydrolase VrEH2 from Vigna radiate. Catal. Comm., 58: 16–20 [CrossRef] [Google Scholar]
  16. Lilian L. B., Bruna Z. C., Marcelo A.S. T., Clelton A. S., Aline C., Marianna T.P. F., André S. S., Juliano S. M., Anita J. M. & Anete P. S. 2013. A novel and enantiose-lective epoxide hydrolase from Aspergillus brasiliensis CCT 1435: Purification and characterization. Prot. Expr. Pur. 91:175–183 [CrossRef] [Google Scholar]
  17. R.V.A. Orru, W. Kroutil. & K. Faber. 1997. Deracemi-zation of (+)-2, 2-disubstituted epoxides via enantiocon-vergent chemoenzymic hydrolysis using Nocardia EH1 epoxide hydrolase and sulfuric acid. Tetrahedron Lett. 38:1753–1754 [CrossRef] [Google Scholar]
  18. C. Morisseau, H. Nellaiah, A. Archelas, R. Furstoss & J.C. Baratti. 1997. Asymmetric hydrolysis of racemic para-nitrostyrene oxide using an epoxide hydrolase preparation from Aspergillus niger. Enzyme Microbiol. Technol. 20:446–452. [CrossRef] [Google Scholar]
  19. C.S. Chen, Y. Fujimoto, G. Girdaukas, C.J. Sih. & J. Am. 1982. Quantitative analyses of biochemical kinetic resolutions of enantiomers. Chem. Soc. 104:7294–7299 [CrossRef] [Google Scholar]
  20. C. S. Chen, Y. Fujimoto, G. Girdaukas, C. J. Sih. & J. Am. 1982. Microbial degradation of the phytosterol side chain. II. Incorporation of [14C]-NaHCO3 onto the C-28 position Chem. Soc. 104: 7294–7298 [CrossRef] [Google Scholar]
  21. Y. Lu, X. Zhao. & Z. N. Chen. 1995. A convenient method for evaluation of the enantiomeric ratio of kinetic resolutions. Tetrahedron: Asymmetry 6: 1093–1097 [CrossRef] [Google Scholar]
  22. Y. Xu, J-H Xu, J. Pan, L. Zhao. & S.L. Zhang. 2004. Biocatalytic resolution of nitro-substituted phenoxypro-pylene oxides with Trichosporon loubierii epoxide hydrolase and prediction of their enantiopurity variation with reaction time. Mol. Catal. B: Enzymatic 27:155–159 [CrossRef] [Google Scholar]
  23. S Takeji., O. Kenji, Akatsuka H., Kawai E. & Matsumae H. 2000. Enzymatic resolution of diltiazem intermediate by Serratia marcescens lipase: molecular mechanism of lipase secretion and its industrial application J. Mol. Catal. B: Enzymatic, 10: 141–149 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.