Open Access
MATEC Web of Conferences
Volume 22, 2015
International Conference on Engineering Technology and Application (ICETA 2015)
Article Number 05001
Number of page(s) 10
Section Chemical and Industrial Technology
Published online 09 July 2015
  1. Pauson P L. 1954. Ferrocene Derivatives. Part I. The direct synthesis of substituted ferrocenes. J. Am. Chem. Soc. 76(8): 2187–2191. [CrossRef] [Google Scholar]
  2. Kealy T J. & Pauson P L. 1951. A new type of organo-iron compound. Nature. 168: 1039. [CrossRef] [Google Scholar]
  3. Yuan.Y.F. & Ye.S.M. 1995. Ferrocene derivatives with biological (Richard) activity .Chemistry; 5: 24–31. [Google Scholar]
  4. Babin VN, Dubinin AV, Raevskii PM, Sviridov AF. & Sherman AL. 1979. Model’ khimicheskogo carcinogeneza (molekulyarnye aspekty). Modeli. Algoritmy. Prinyatie Reshenii. Nauka: Moscow, 153–167. [Google Scholar]
  5. Popova (Snegur) LV, Babin VN, Belousov YuA, Nekrasov YuS, Snegireva AE, Borodina NP, Shaposhnikova GM, Bychenko OB, Raevskii PM, Morozova NM, Ilyina AI,Shitkov KG. 1993. Antitumor effects of binuclear ferrocene derivatives. Appl. Organometal. Chem. 7: 85. [CrossRef] [Google Scholar]
  6. Kopf-Maier P, Kopf H. & Neuse EW. 1984. Ferrocenium Salts—The First Antineoplastic Iron Compounds. Angew. Chem. 96: 446. [CrossRef] [Google Scholar]
  7. Lubov V. Snegur, Yury S. Nekrasov, Nataliya S. Sergeeva, Zhanna V. Zhilina, Vera V Gumenyuk, Zoya A. Starikova, Alexander A. Simenel, Nataliya B. Morozova, Irina K. Sviridova & Valery N. Babin. 2008. Ferrocenylalkyl azoles: Bioactivity, synthesis, structure. Appl. Organometal. Chem. 22: 139–147. [CrossRef] [Google Scholar]
  8. Amir, E.; Freedman, O. C.; Seruga, B. & Evans, D. G. 2010. Assessing women at high risk of breast cancer: a review of risk assessment models. J. Natl. Cancer Inst. 102: 680–691. [Google Scholar]
  9. Grodin, J. M.; Siiteri, P. K. & MacDonald, P. C. 1973. Source of estrogen production in postmenopausal women. J. Clin. Endocrinol. Metab. 36: 207–214. [CrossRef] [Google Scholar]
  10. O’Neill, J. S.; Elton, R. A. & Miller, W. R. 1988. Aromatase activity in adipose tissue from breast quadrants: a link with tumour site. Br. Med. J (Clin. Res. Ed.). 296: 741–743. [CrossRef] [Google Scholar]
  11. Brueggemeier, R. W. 2006. Update on the use of aromatase inhibitors in breast cancer. Expert Opin. Pharmacother. 7: 1919–1930. [CrossRef] [Google Scholar]
  12. Brueggemeier, R. W; Hackett, J. C. & Diaz-Cruz, E. S. 2005. Aromatase inhibitors in the treatment of breast cancer. Endocr. Rev. 26: 331−345. [CrossRef] [Google Scholar]
  13. Debashis Ghosh, Jessica Lo, Daniel Morton, Damien Valette, Jingle Xi, Jennifer Griswold, Susan Hubbell, Chinaza Egbuta, Wenhua Jiang, Jing An, & Huw M. L. Davies. 2012. Novel aromatase inhibitors by structure-guided design. J. Med. Chem. 55: 8464–8476. [CrossRef] [Google Scholar]
  14. Ghosh, D.; Griswold, J.; Erman, M. & Pangborn, W. 2009. Structural basis for androgen specificity and oestrogen synthesis in human aromatase. Nature. 457, 219−223. [CrossRef] [Google Scholar]
  15. Gong X, Yang X. & Wang D X. 2006. A new route for the synthesis of N-substituted diketopiperazine derivatives. Chin. Chem. Lett. 17(4): 469–472. [Google Scholar]
  16. Xiao Q, Jiu Feng Z, Hong Li Z. & Min Bo L. 2009. Synthesis and mechanism research of two kinds of ferrocene carboxylic acid based on Willgerodt-Kindler reaction. Chin. Organic. Chemistry. 29(5): 748–752. [Google Scholar]
  17. Kenneth L, Rinehart J R, Cursu, J R. & Phillip E S. 1957. Organic chemistry of ferrocene. II. the preparation of ferrocenyl aliphatic. J. Am. Chem. Soc. 79(13): 3420–3424. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.