Open Access
MATEC Web of Conferences
Volume 22, 2015
International Conference on Engineering Technology and Application (ICETA 2015)
Article Number 05002
Number of page(s) 7
Section Chemical and Industrial Technology
Published online 09 July 2015
  1. Sarciftci N S, Smilowitz L. & Heeger A J. et al. 1992. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science, 258(5087): 1474–1476. [CrossRef] [PubMed]
  2. Yu G, Gao J, Hemmelen J C, Wudl F. & Heeger A J. 1995. Polymer photovoltaic cells enhanced efficiencies via a network of internal donor-acceptor heterojucntions. Science, 270(5243): 1789–1791. [CrossRef]
  3. Kim M et al. 2014. Electrical performance of organic solar cells with additive-assisted vertical phase separation in the photoactive layer. Adv. Energy Mater, 4(2): 1300612.
  4. O’regan, B & Grfitzel M. 1991. A low-cost, high-efficiency solar cell based on dyesensitized. Nature, 353: 737–740. [CrossRef]
  5. Yella A et al. 2011. Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science, 334(6060): 629–634. [CrossRef] [PubMed]
  6. Kim H S et al. 2012. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep, 2: 591.
  7. Park N G.2013. Organometal perovskite light absorbers toward a 20% efficiency lowcost solid-state mesoscopic solar cell. J. Phys. Chem. Lett., 4: 2423–2429. [CrossRef]
  8. Gevorgyan S A, Alstrup J. & Kress F C. 2009. A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. J. Mater. Chem., 19: 5442–5451. [CrossRef]
  9. Na SI, Kim S S, Jo J & Kim D Y. 2008. Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes. Adv. Mater, 20: 4061–4067. [CrossRef]
  10. Hou S et al. 2012. Flexible conductive threads for wearable dye-sensitized solar cells. J. Mater. Chem., 22: 6549–6552. [CrossRef]
  11. Snaith H J. 2013. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett., 4: 3623–3630. [CrossRef]
  12. Ball J M, Lee M M, Hey A & Snaith H J. 2013. Low-temperature processed mesosuperstructured to thin-film perovskite solar cells. Energy Environ. Sci, 6, 1739–1743. [CrossRef]
  13. Huanping Zhou et al. 2014. Interface engineering of highly efficient perovskite solar cells, Science, 10(1126): 345–542.
  14. Chen Q. et al. 2014. Planar heterojunction perovskite solar cells via vapor assisted solution process. J. Am. Chem. Soc., 136(2): 622–625. [CrossRef]
  15. Heo J H. et al. 2013. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photon, 7(6): 486–491. [CrossRef]
  16. Wojciechoski K, Saliba M, Leijtens T, Abate A. & Snatih H. 2014. Sub 150 uC processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ. Sci, 7: 1142–1147. [CrossRef]
  17. Xingb G. et al. 2013. Long-range balanced electron and hole transport lengths in organic-inorganic CH3NH3PbI3. Science, 342(6156): 344–347. [CrossRef] [PubMed]
  18. Stranks S D. et al. 2013. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 342(6156): 341–344. [CrossRef]
  19. Mingzhen Liu, Michael B. Johnston & Henry J. Snaith. 2013. Efficient planar heterojunction perovskite solar cells by vapour deposition, Opticletter, 19(501): 395–403.
  20. Zhang Weihao Peng Xiaochen & Feng Xiaodong. 2014. Recent progress of perovskite solar cells. Electronic Components and Materials. 33(8):7–11.
  21. Burschka J, Pellet N. & Moon S J, et al. 2013. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499(7458): 316–319. [CrossRef] [PubMed]
  22. Ku Zhiliang. 2014. The Optimization and Design of Counter Electrodes for Mesoscopic Solar Cells Candidate. Wuhan: Huazhong University of Science and Technology.
  23. Im J, Lee C. & Lee J, et al. 2011. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3(10): 4088–4093. [CrossRef]
  24. Epron G E, Burlakov V M, Docampo P, Goriely A. & Snaith H J. 2014. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater 24(1): 151–157. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.