Open Access
Issue |
MATEC Web of Conferences
Volume 22, 2015
International Conference on Engineering Technology and Application (ICETA 2015)
|
|
---|---|---|
Article Number | 05002 | |
Number of page(s) | 7 | |
Section | Chemical and Industrial Technology | |
DOI | https://doi.org/10.1051/matecconf/20152205002 | |
Published online | 09 July 2015 |
- Sarciftci N S, Smilowitz L. & Heeger A J. et al. 1992. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science, 258(5087): 1474–1476. [CrossRef] [PubMed] [Google Scholar]
- Yu G, Gao J, Hemmelen J C, Wudl F. & Heeger A J. 1995. Polymer photovoltaic cells enhanced efficiencies via a network of internal donor-acceptor heterojucntions. Science, 270(5243): 1789–1791. [CrossRef] [Google Scholar]
- Kim M et al. 2014. Electrical performance of organic solar cells with additive-assisted vertical phase separation in the photoactive layer. Adv. Energy Mater, 4(2): 1300612. [Google Scholar]
- O’regan, B & Grfitzel M. 1991. A low-cost, high-efficiency solar cell based on dyesensitized. Nature, 353: 737–740. [CrossRef] [Google Scholar]
- Yella A et al. 2011. Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science, 334(6060): 629–634. [CrossRef] [PubMed] [Google Scholar]
- Kim H S et al. 2012. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep, 2: 591. [Google Scholar]
- Park N G.2013. Organometal perovskite light absorbers toward a 20% efficiency lowcost solid-state mesoscopic solar cell. J. Phys. Chem. Lett., 4: 2423–2429. [CrossRef] [Google Scholar]
- Gevorgyan S A, Alstrup J. & Kress F C. 2009. A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. J. Mater. Chem., 19: 5442–5451. [CrossRef] [Google Scholar]
- Na SI, Kim S S, Jo J & Kim D Y. 2008. Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes. Adv. Mater, 20: 4061–4067. [CrossRef] [Google Scholar]
- Hou S et al. 2012. Flexible conductive threads for wearable dye-sensitized solar cells. J. Mater. Chem., 22: 6549–6552. [CrossRef] [Google Scholar]
- Snaith H J. 2013. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett., 4: 3623–3630. [CrossRef] [Google Scholar]
- Ball J M, Lee M M, Hey A & Snaith H J. 2013. Low-temperature processed mesosuperstructured to thin-film perovskite solar cells. Energy Environ. Sci, 6, 1739–1743. [CrossRef] [Google Scholar]
- Huanping Zhou et al. 2014. Interface engineering of highly efficient perovskite solar cells, Science, 10(1126): 345–542. [Google Scholar]
- Chen Q. et al. 2014. Planar heterojunction perovskite solar cells via vapor assisted solution process. J. Am. Chem. Soc., 136(2): 622–625. [Google Scholar]
- Heo J H. et al. 2013. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photon, 7(6): 486–491. [CrossRef] [Google Scholar]
- Wojciechoski K, Saliba M, Leijtens T, Abate A. & Snatih H. 2014. Sub 150 uC processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ. Sci, 7: 1142–1147. [CrossRef] [Google Scholar]
- Xingb G. et al. 2013. Long-range balanced electron and hole transport lengths in organic-inorganic CH3NH3PbI3. Science, 342(6156): 344–347. [CrossRef] [PubMed] [Google Scholar]
- Stranks S D. et al. 2013. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 342(6156): 341–344. [Google Scholar]
- Mingzhen Liu, Michael B. Johnston & Henry J. Snaith. 2013. Efficient planar heterojunction perovskite solar cells by vapour deposition, Opticletter, 19(501): 395–403. [Google Scholar]
- Zhang Weihao Peng Xiaochen & Feng Xiaodong. 2014. Recent progress of perovskite solar cells. Electronic Components and Materials. 33(8):7–11. [Google Scholar]
- Burschka J, Pellet N. & Moon S J, et al. 2013. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499(7458): 316–319. [CrossRef] [PubMed] [Google Scholar]
- Ku Zhiliang. 2014. The Optimization and Design of Counter Electrodes for Mesoscopic Solar Cells Candidate. Wuhan: Huazhong University of Science and Technology. [Google Scholar]
- Im J, Lee C. & Lee J, et al. 2011. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3(10): 4088–4093. [CrossRef] [Google Scholar]
- Epron G E, Burlakov V M, Docampo P, Goriely A. & Snaith H J. 2014. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater 24(1): 151–157. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.