Open Access
Issue
MATEC Web of Conferences
Volume 22, 2015
International Conference on Engineering Technology and Application (ICETA 2015)
Article Number 03011
Number of page(s) 7
Section Mechanic and Control Engineering
DOI https://doi.org/10.1051/matecconf/20152203011
Published online 09 July 2015
  1. P. J. Costa Branco, & J. A. Dente. 2010. “Design and experimental evaluation of a fuzzy logic pressure controller for the Airbus 310/320 braking control system,” Engineering Applications of Artificial Intelligence, 23(6): 989–999. [CrossRef] [Google Scholar]
  2. Z. Ming, N. Hong, W. Xiaohui, & Z. Enzhi. 2008. “Research on modelling and simulation for aircraft anti-skid braking,” 2nd International Symposium on Systems and Control in Aerospace and Astronautics, Shenzhen, China, pp: 1–5. [Google Scholar]
  3. I. Tunay, E. Y. Rodin & A. A. Beck. 2001. Modeling and robust control design for aircraft brake hydraulics, IEEE Trans. Control Syst. Technol., 9(2): 319–329. [CrossRef] [Google Scholar]
  4. J. W. Jeon, K. C. Lee, D. H. Hwang, & Y. J. Kim. 2002. Development of a dynamic simulator for braking performance test of aircraft with anti-skid brake system, In Annual Meeting of International Control Automation System, Muju, pp: 518–523. [Google Scholar]
  5. I. Tunay. 2001. Antiskid control for aircraft via extremum-seeking, In Pro. Amer. Control Conf., Arlington, VA, pp: 665–670. [Google Scholar]
  6. C. Unsal, & P. Kachroo. 1999. Sliding mode measurement feedback control for antilock braking systems, IEEE Trans. Control Syst. Technol., 7(2): 271–281. [CrossRef] [Google Scholar]
  7. Pritchard J. 2003. Overview of landing gear dynamics. Journal of Aircraft, 38(1): 130–137. [CrossRef] [Google Scholar]
  8. Cheng P. 2003. Automatic Control Theory. China Higher Education Press, pp: 60–120. [Google Scholar]
  9. Z. M. Wang, & S. K. Tan. 1998. Vibration and pressure fluctuation in a flexible hydraulic power system on an aircraft, Computers & Fluids, 27(1): 1–9. [CrossRef] [Google Scholar]
  10. Pacejka HB, Bakker E. & Nyborg L. 1987. Tyre modelling for use in vehicle dynamics studies. SAE Paper. [Google Scholar]
  11. Kayacan E. & Oniz Y.2009. A grey system modeling approach for sliding-mode control of antilock braking system. Industrial Electronics, IEEE Transactions on, 56(8): 48–52. [Google Scholar]
  12. Jeong, H.-S., & Kim, H.E. 2002. Experimental based analysis of the pressure control characteristics of an oil hydraulic three-way on/off solenoid valve controlled by PWM signal, Journal of Dynamic Systems, Measurement, and Control, 124(1): 196. [CrossRef] [Google Scholar]
  13. Kajima T. 1995. Dynamic model of the plunger type so lenoids at deenergizing state. IEEE Transactions on Magnetics, 31(3): 2315–2323. [CrossRef] [Google Scholar]
  14. L. Waszniowski, Z. Hanzalek, & J. Doubrava. 2011. Aircraft control system validation via hardware-in-the loop simulation, Journal of aircraft, 48(4): 1466–1468. [CrossRef] [Google Scholar]
  15. H. B. Pacejka & I. J. M. Besselink, 1997. Magic formula tyre model with transient properties, Vehicle System Dynamics, 27(1): 234–249. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.