Open Access
MATEC Web of Conferences
Volume 16, 2014
CSNDD 2014 - International Conference on Structural Nonlinear Dynamics and Diagnosis
Article Number 04002
Number of page(s) 4
Section Nonlinear dynamics of MEMS/NEMS/AFM
Published online 01 September 2014
  1. J. Kupnizky, Nanostructures studied by AFM, Thesis from Acta University (2003). [Google Scholar]
  2. B. Anczykowski, D. Krüger, H. Fuchs, Cantilever dynamics in quasinon-contact force microscopy: Spectroscopic aspects, Phys. Rev. B, 53, 1996, 485–488. [CrossRef] [Google Scholar]
  3. A. Kühle, A.H. Soerensen, J. Bohr, Role of attractive forces in tapping tip force microscopy, J. Appl. Phys. 81, 1997, 6562–6569. [CrossRef] [Google Scholar]
  4. R.W. Stark, Bistability, higher harmonics, and chaos in AFM, Materials Today, 13, 2010, 24–32. [CrossRef] [Google Scholar]
  5. M. Tsukada, N. Sasaki, R. Yamura, N. Sato, K. Abe, Features of cantilever motion in dynamic-mode AFM, Surf. Sci. 401, 1998, 355–363. [CrossRef] [Google Scholar]
  6. M. Lee, W. Jhe, General theory of amplitude-modulation atomic force microscopy, Phys. Rev. Lett, 97, 2006, id. 036104. [Google Scholar]
  7. S. Rützel, S.I. Lee, A. Raman, Nonlinear dynamics of atomic-force microscope probes driven in Lennard-Jones potentials, Proc. R. Soc. Lond, 459, 2003, 1925–1948. [Google Scholar]
  8. K. Yamasue, T. Hikihara, Contol of microcantilevers in dynamic force microscopyusing time delayed feedback, Rev. Sci. Instrum, 77, 2006, 1–6. [CrossRef] [Google Scholar]
  9. H. Sadeghian, M.T. Arjmand, H. Salarieh, A. Alasty, Chaos control in single mode approximation of TAFM systems using nonlinear delayed feedback based on sliding mode control. In: Proceedings of the ASME 2007 International Design and Engineering Technical Conference and Computers and Information in Engineering Conference, Las Vegas, NV (2007). [Google Scholar]
  10. R.W. Stark, Time delay Q-control of the microcantilever in dynamic atomic force microscopy. In: Proceedings of 2005 5th IEEE Conference on Nanotechnology, Nagoya, Japan, (2005). [Google Scholar]
  11. F.M. Alsaleem and M.I. Younis, Integrity Analysis of Electrically Actuated Resonators With Delayed Feedback Controller, Journal of Dynamic Systems, Measurement, and Control, 133, 2013, 031011. [CrossRef] [Google Scholar]
  12. F.M. Alsaleemand and M.I. Younis, Stabilizationofelectrostatic MEMS resonators using a delayed feedback controller, Smart Materials and Structures, 19, 2010, 035016. [CrossRef] [Google Scholar]
  13. K. Yamasue, K. Kobayashib, H. Yamada, K. Matsushige, T. Hikihara, Controlling chaos in dynamic-mode atomic force microscope, Phys. Lett. A, 373, 2009, 3140. [CrossRef] [Google Scholar]
  14. K. Pyragas, A. Tamaoevièius, Continuous control of chaos by self-controlling feedback, Phys. Lett.A, 170, 1992, 421–428. [Google Scholar]
  15. I.I. Blekhman, Vibrational Mechanics-Nonlinear Dynamic Effects, General Approach, Application. Singapore: World Scientific (2000). [Google Scholar]
  16. J.J. Thomsen, Vibrations and Stability: Advanced Theory, Analysis, and Tools. Springer-Verlag, Berlin-Heidelberg (2003). [Google Scholar]
  17. A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations. NewYork: Wiley (1979). [Google Scholar]
  18. A.H. Nayfeh, Introduction to Perturbation Techniques. NewYork:Wiley(1981). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.