Open Access
Issue
MATEC Web of Conferences
Volume 15, 2014
Building Surveying, Facilities Management and Engineering Conference (BSFMEC 2014)
Article Number 01032
Number of page(s) 8
DOI https://doi.org/10.1051/matecconf/20141501032
Published online 19 August 2014
  1. Muntohar, A. (2011). Engineering characteristics of the compressed-stabilised earth brick. Construction Building Materials 25: 4215–4220. [CrossRef]
  2. Cultrone, G. & Sebastian, E. (2008). “Fly ash addition in clayey materials to improve the quality of solid brick”.Department of Mineralogy and Petrology, Faculty of Science, Granda University.Pp 2,3.
  3. Master Builders Association Malaysia (2007).“Rising prices of building material will hamper construction industry”. Retrieved September 20, 2012
  4. Safiuddin, M. (2010). Utilization of Solid Wastes in Construction Materials. Physical Sciences, 1952–1963
  5. Safiuddin, M., Jumaat, M.Z., Salam, A., &Hafizan, M. (2010). “Best use of palm oil fuel ash”. The Independent. Retrieved Sept 26, 2012 from The Independent,
  6. Aminudin, E. (2010), “Engineering Properties of POFA Cement Brick”. UniversitiTeknologi Malaysia: Thesis Master
  7. Tangchirapat, W., Saeting, T., Jaturapitakkul, C., Kiattikomol, K. & Siripanichgorn, A. (2006). “Use of waste ash from palm oil industry in concrete”. Department of Civil Engineering, King Mongkut’s University of Technology Thornburi, Thailand.
  8. Ahmad Fuad, M.Y., Zaini, M.J., Jamaludin, M., Mohd Ishak, Z.A. and Mohd Omar, A.K. (1994). Determination of Filler Content in Rice Husk Ash and Wood-Based Composites by Thermogravimetric Analysis, Journal of Applied Polymer Science 51: 1875–1882 [CrossRef]
  9. Suri, R.S. (2009). “Komposit Poliester Tak Tepu – Sekam Padi: Kesan Pencuacaan Terhadap Sifat Mekanikal Komposit”. Universiti Sains Malaysia.
  10. Saheb & Jog (1999), “Natural Fibre Polymer Composite: A Review”, Advances in Polymer Technology, Vol. 18, No. 4, 351–363.
  11. Hattotuwa G.B. Premalal, H. Ismail (2002), “A. Baharin Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites”, Polymer Testing 21: 833–83 [CrossRef]
  12. Ministry of Science, Technology and Environment, Malaysia. (2002). National Policy on the Environment. Malaysia: Ministry of Science, Technology and Environment.
  13. Ministry of Science, Technology and Environment, Malaysia. (2002). National Policy on the Environment. Malaysia: Ministry of Science, Technology and Environment
  14. S.P. Raut, R. R. (2011). Development of sustainable construction material using industrial and agricultural solid waste: A Review of waste-create bricks. Construction and Building Materials 25: 4037–4042. [CrossRef]
  15. EN 772-1 (2011), Methods Of Test For Masonry Units. Determination Of Compressive Strength, British Standard Instituition
  16. BS 812-2: 1995 (1995) Testing For Aggregates, Methods For Determination Of Density, British Standard Instituition
  17. Sutas, J., Mana, A. & Pitak, L. (2011). “Effect of Rice Husk and Rice Husk Ash to Properties of Bricks. Procedia Engineering 32 (2012) 1061 – 1067 [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.