Open Access
Issue
MATEC Web of Conferences
Volume 13, 2014
ICPER 2014 - 4th International Conference on Production, Energy and Reliability
Article Number 04005
Number of page(s) 5
Section Materials and Manufacturing
DOI https://doi.org/10.1051/matecconf/20141304005
Published online 17 July 2014
  1. T. Schuh, U. Gayer, in A.L. Leao, F.X. Carvallo, E. Frollini (eds), Lignocellulosic Plastic Composites, UNSEP, Sao Paolo, 181 (1997) [Google Scholar]
  2. Abe, K., Iwamoto, S.,& Yano, H. Obtaining cellulose nanofibers with a uniform width of 15nm from wood. Biomacromolecules, 8(10), 3276–3278 (2007) [CrossRef] [Google Scholar]
  3. De Morais Teixeira, E., Correa, A., Manzoli, A., de Lima Leite, F., de Oliveira, C., & Mattoso, L. Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose, 17(3), 595–606. (2010) [CrossRef] [Google Scholar]
  4. Wang, B., Sain, M., & Oksman, K. (2007). Study of structural morphology of hemp fiber from the micro to the nanoscale. Applied Composite Materials, 14(2), 89 – 103 (2007) [CrossRef] [Google Scholar]
  5. R. M. Sheltami, I. Abdullah, I. Ahmad, A. Dufresne, and H. Kargarzadeh, “Extraction of cellulose nanocrystals from mengkuangleaves (Pandanus tectorius),” Carbohydrate Polymers, 88,772–779 (2012) [Google Scholar]
  6. Giesen, W., Wulffraat, S., Zieren, M., & Scholten, L. Mangrove guidebook for Southeast Asia, (part II). The Netherlands: FAO and Wetlands International (2006/07) [Google Scholar]
  7. A. K. Bledzki and J. Gassan, “Composites reinforced with cellulose based fibres,” Progress in Polymer Science, 24, 221–274 (1999) [Google Scholar]
  8. Araki, J., M. Wada, S. Kuga, and T. Okano, Birefringent glassy phase of a cellulose microcrystal suspension. Langmuir, 16, 3298–3305 (2000) [CrossRef] [Google Scholar]
  9. Hayashi N, Kondo T, Ishihara M, Enzymatically produced nano-ordered shorts containing cellulose I_crystalline domains. Carbohydr, 61, 191–197 (2000) [CrossRef] [Google Scholar]
  10. W. Chen, H. Yu, and Y. Liu, “Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers,” Carbohydrate Polymers, 86, 453–461 (2011) [CrossRef] [Google Scholar]
  11. S. K. Garkhail, R. W. H. Heijenrath, and T. Peijs, “Mechanical properties of natural-fibre-mat-reinforced thermoplastics based on flax fibers and polypropylene,” in Applied Composite Materials, 7, 351–372 (2000) [Google Scholar]
  12. J. Gassan, “A study of fibre and interface parameters affecting the fatigue behaviour of natural fibre composites,” Composites Part A: Applied Science and Manufacturing, 33, 369–374 (2002). [Google Scholar]
  13. G. Gong, J. Pyo, A. P. Mathew, and K. Oksman, “Tensile behavior, morphology and viscoelastic analysis of cellulose nanofiber-reinforced (CNF) polyvinyl acetate (PVAc),” Composites Part A: Applied Science and Manufacturing, 42, 1275–1282 (2011) [CrossRef] [Google Scholar]
  14. R. Masoodi, R. F. El-Hajjar, K. M. Pillai, and R. Sabo, “Mechanical characterization of cellulose nanofiber and bio-based epoxy composite,” Materials & Design, 36, 570–576 (2012) [CrossRef] [Google Scholar]
  15. M. R. Ishak, S. M. Sapuan, Z. Leman, M. Z. A. Rahman, U. M. K. Anwar, and J. P. Siregar, “Sugar palm (Arenga pinnata): Its fibres, polymers and composites,” Carbohydrate Polymers, 91, 699–710 (2013) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.