Open Access
Issue
MATEC Web of Conferences
Volume 6, 2013
Concrete Spalling due to Fire Exposure: Proceedings of the 3rd International Workshop
Article Number 01006
Number of page(s) 8
Section Experimental Investigation of Spalling Mechanisms
DOI https://doi.org/10.1051/matecconf/20130601006
Published online 17 September 2013
  1. Poon C. S., Azhar S., Anson M., and Wong Y., Comparison of the strength and durability performance of normal- and high-strength Pozzolanic concretes at elevated temperatures, Cement Concrete Research, 31, 1291–1300, 2001. [Google Scholar]
  2. Phan L. T., Carino N. J., Review of mechanical properties of HSC at elevated temperature, Journal of Materials in Civil Engineering, ASCE, 10(1), 58-64, 1998. [CrossRef] [Google Scholar]
  3. Lawson L. J., Phan L.T., Davis F., Mechanical properties of high performance concrete after exposure to elevated temperatures, NISTR 6475, 1-35, 2000. [Google Scholar]
  4. Kodur V. K. R., Dwaikat M., Fire induced spalling in reinforced concrete beams, Structures and Buildings, ICE Proceedings, 165, (SB7), 347–359, 2012. [CrossRef] [Google Scholar]
  5. Kodur K. V. R., Sultan M. A., Structural behaviour of high performance concrete columns exposed to fire, International Symposium on High Performance and Reactive Power Concrete, 217–232, 1998. [Google Scholar]
  6. Khoury G. A., Anderberg Y., Concrete spalling review. Fire Safety Design, 1–60, 2000. [Google Scholar]
  7. Ali F. A., O'Connor D., Abu-Tair A., Explosive spalling of high strength concrete columns in fire, Magazine of Concrete Research, 53(3), 197–204, 2001. [CrossRef] [Google Scholar]
  8. Kodur, V. K., McGrath, R., Effect of silica fume and lateral confinement on fire endurance of high strength concrete columns, Canadian Journal of Civil Engineering, 33(1), 93–102, (2006). [CrossRef] [Google Scholar]
  9. Kodur V. K. R., and Dwaikat M. B., Effect of fire induced spalling on the response of reinforced concrete beams, International Journal of Concrete Structural Materials, 71–81, 2008. [Google Scholar]
  10. Wu B., Su X. P. Li, H Yuan J., Effect of High Temperature on Residual Mechanical Properties of Confined and Unconfined High-Strength Concrete, ACI Materials Journal, 99 (4), pp. 399–407, 2002. [Google Scholar]
  11. Sharma U. K., Zaidi K. A., and Bhandari N. M., Residual Compressive Stress-Strain Relationship for Concrete Subjected to Elevated Temperatures, Journal of Structural Fire Engineering, 3(4), 327–350, 2012. [CrossRef] [Google Scholar]
  12. Zaidi S. K. A. Residual compressive behaviour of confined concrete subjected to elevated temperatures, Ph.D Thesis, Department of civil Engineering, Indian Institute of Technology Roorkee, Roorkee, India, pp. 219, 2011. [Google Scholar]
  13. Kodur V. K. R. and Phan L., Critical factors governing the fire performance of high strength concrete system, Fire Safety Journal, 42, 482-488, 2007. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.