Issue |
MATEC Web Conf.
Volume 408, 2025
44th Conference of the International Deep Drawing Research Group (IDDRG 2025)
|
|
---|---|---|
Article Number | 01080 | |
Number of page(s) | 4 | |
Section | Full Papers | |
DOI | https://doi.org/10.1051/matecconf/202540801080 | |
Published online | 07 May 2025 |
Investigation failure behavior in the shear tensile test with variety of specimen stiffness
TUD Dresden University of Technology, Chair of Forming and Machining Technology,
01069
Dresden, Germany
* Corresponding author: eugen.wolf1@tu-dresden.de
This paper focuses on the failure behavior of clinched specimens with various stiffnesses under shear tensile loading. The primary objective is to assess the influence of the specimen stiffness with an arrangement of clinched joints. The specimen stiffness depends on several variables. In addition to the material selection, the specific choice of geometry and the design of the clinched joints must also be taken into account. A number of experiments was conducted to investigate the failure behavior of specimens with an arrangement of three clinched joints under shear tensile loading. These configurations were subjected to shear tensile tests, with force displacement curves recorded for each specimen to provide a detailed characterization of their structural response. The stiffness is modified by altering the specimen width, which has marginal impact on the maximum force. The experimental findings indicate that reducing the specimen stiffness results in a shift in the type of stress, with the failure behavior becoming increasingly influenced by bending stress. These results offer important insights for the design of clinched joint assemblies, indicating that it is feasible to achieve the desired properties by changing the specimen stiffness.
Key words: Joining / Sheet Metal / Stiffness / Clinching
© The Authors, published by EDP Sciences, 2025
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.