Issue |
MATEC Web Conf.
Volume 382, 2023
6th International Conference on Advances in Materials, Machinery, Electronics (AMME 2023)
|
|
---|---|---|
Article Number | 01010 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/matecconf/202338201010 | |
Published online | 26 June 2023 |
Optimization of asynchronous motor with Taguchi method based on Finite Element Analysis
School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China.
* Corresponding author: leosxjm@163.com
In order to study the operation process of the motor and improve the operating performance of the motor, this paper performs finite element simulation of the three-phase asynchronous motor and optimizes the initial design by using the Taguchi method. Firstly, a three-phase asynchronous motor model is established with the voltage, current, torque, flux linkage, distribution of the flux lines and magnetic induction intensity of the motor under rated conditions is vertified by Finite Element Analysis (FEA), and the total accuracy reaches 92%. Then, the parametric simulation of the stator and rotor cogging parameters and stator and rotor parameters is carried and the sensibility of different parameters on the motor torque is obtained. The rotor cogging parameter Hs01 and stator cogging parameter Hs0 had the highest sensitivity, which were 75% and 16%, respectively. Finally, the Taguchi method was applied to optimize the torque of the motor, and the torque was increased by 9.5%.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.