Issue |
MATEC Web Conf.
Volume 378, 2023
SMARTINCS’23 Conference on Self-Healing, Multifunctional and Advanced Repair Technologies in Cementitious Systems
|
|
---|---|---|
Article Number | 08001 | |
Number of page(s) | 6 | |
Section | Innovative Solutions for Service Life Extension of Concrete Structures and Infrastructure | |
DOI | https://doi.org/10.1051/matecconf/202337808001 | |
Published online | 28 April 2023 |
Floating breakwater pontoon pilot cast with carbon textile reinforcement-based ultra high durability concrete: Materials development and testing, and implementation in the North Atlantic (Irelands west coast)
1
Technische Universitaet Dresden, Department of Civil Engineering, Institute of Construction Materials, DE-01062 Dresden
2
Banagher Precast Concrete Ltd, Queen S, Kylebeg, Banagher, Co. Offaly, Ireland
* Corresponding author: christof.schroefl@tu-dresden.de
A floating unit with three pontoons made of epoxy-coated carbon textile reinforced, ultra-high durability concrete (ECF UHDC), mineral impregnated carbon fibre-reinforced UHDC (MCF UHDC) and, as references, steel-reinforced concretes has been designed and installed in the Northern Atlantic. While marine structures with steel reinforcement require large cover depths, which cause problems in size, cost, environmental friendliness and short service life, carbon textile reinforced concrete (TRC) cannot suffer from chloride-induced corrosion of a metal reinforcement. In the EU H2020 project “ReSHEALience” (rethinking coastal defence and green-energy service infrastructures through enhanced-durability highperformance cement-based materials), TRCs have been modified with functional admixtures from consortium partners. A mineral self-healing promoter and alumina nano-fibers have, among others, been implemented to boost high-performance concretes towards UHDCs. Resulting composite variants have been applied in a full-scale floating unit that has been launched in the harbor of Galway at the Irish West Coast in June 2020. Such a floating body is a representation of breakwaters installed to reduce wave impacts to the coast. Besides, TRC-based UHDC can be applied as strengthening and repair layer on concrete structures to enhance their service life in general.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.