Issue |
MATEC Web Conf.
Volume 378, 2023
SMARTINCS’23 Conference on Self-Healing, Multifunctional and Advanced Repair Technologies in Cementitious Systems
|
|
---|---|---|
Article Number | 07005 | |
Number of page(s) | 9 | |
Section | Cementitious Grouting Technologies and Corrosion Inhibition Solutions of Reinforcement Steel | |
DOI | https://doi.org/10.1051/matecconf/202337807005 | |
Published online | 28 April 2023 |
Inhibition Mechanism of Oxalhydrazide on Reinforcing Steel in Pore Solution Contaminated by 3.5%NaCl - Experimental and Theoretical Study
1
Shiv Nadar University, Department of Civil Engineering, Uttar Pradesh 201314, India
2
Shiv Nadar University, Department of Chemical Engineering, Uttar Pradesh 201314, India
* Corresponding author: ss831@snu.edu.in
Concrete is one among the most consumed materials on the planet secondary to water. However, the degradation of concrete happens due to the corrosion of reinforcement. Although the pore solution of concrete is alkaline, the corrosion of rebars in concrete is triggered due to aggressive ions like chlorides entering the concrete. The most common method of corrosion inhibition is by utilising corrosion inhibitors which when added to the concrete stays in the pore solution and prevents the corrosion of surface of rebars from aggressive ions. Although there are number of inhibitors, the rise in corrosion deterioration demands the need for new potential inhibitors which are highly effective in different aggressive environments. This study is based on the corrosion of rebars in simulated concrete pore solution in the presence of 3.5% NaCl with oxalhydrazide as the potential inhibiting material. The corrosion behaviour of rebar is obtained by electrochemical studies using EIS and potentiodynamic polarization and theoretically analysed employing molecular mechanics and molecular dynamics simulations. The experimental results revealed that the inhibitor is effective in reducing the corrosion and the values of binding energy of the inhibitors on rebar surface also go well with the experimental results. Oxalhydrazide is found effective in minimizing the attack of chloride ion on rebar in pore solution.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.