Issue |
MATEC Web Conf.
Volume 364, 2022
International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022)
|
|
---|---|---|
Article Number | 02010 | |
Number of page(s) | 8 | |
Section | Concrete Durability Aspects - Concrete Durability: Innovative Materials and Influences of Material Composition | |
DOI | https://doi.org/10.1051/matecconf/202236402010 | |
Published online | 30 September 2022 |
Effects of sodium oxide content on the durability of alkali-activated mortar utilizing botswana copper mine tailings and fly ash
1
Botswana International University of Science and Technology, Department of Civil and Environmental Engineering, Botswana
2
University of the Witwatersrand Johannesburg, School of Civil and Environmental Engineering, Johannesburg, South Africa
* Corresponding author: abraham.sannoh@studentmail.biust.ac.bw
This investigation aims to provide experimental data on the performance of alkali-activated mortar made of copper mine tailings (CMT) and fly ash (FA) exposed to acid-sulphate attacks and elevated temperature environments as a measure of durability. FA was used as a replacement material, substituting 20 to 40% of the CMT by mass, and sodium hydroxide was the alkaline activator, which was added in terms of Na2O content by mass of the total binder at 5%, 10%, and 15%. The durability performance of alkali-activated mortar was evaluated against 5 % and 10% concentrations of sulphuric and hydrochloric acids, and magnesium and sodium sulphates up to 180 days of exposure, as well as elevated temperature environment. The specimens were first visually examined, and weight change was measured before being exposed to an elevated temperature environment and the residual compressive strength was measured. It was observed that Na2O content and elevated temperature environment influence the residual compressive strength of alkali-activated mortar. Increasing the Na2O content for all CMT-FA-based mortar samples performed well in sulphates and acids mediums in terms of durability, but with a slight reduction in its durability performance in terms of residual compressive strength. However, these effects were more profound in samples exposed to acids, particularly those with lower FA replacement levels and sodium oxide content. For the high-temperature exposure, the residual compressive strength of all CMT-FA samples was much higher than the initial values. The findings also revealed that the partial replacement of CMT by FA significantly improved the residual compressive strength in terms of the durability performance of the alkali-activated mortar
Key words: Copper mine tailings / Fly ash / Alkali activation / Acid and Sulphate resistances / Elevated temperature
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.