Issue |
MATEC Web Conf.
Volume 336, 2021
2020 2nd International Conference on Computer Science Communication and Network Security (CSCNS2020)
|
|
---|---|---|
Article Number | 07005 | |
Number of page(s) | 10 | |
Section | Intelligence Algorithms and Application | |
DOI | https://doi.org/10.1051/matecconf/202133607005 | |
Published online | 15 February 2021 |
Research on path planning of cleaning robot based on an improved ant colony algorithm
School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, 212003 Zhenjiang, China
* Corresponding author: 619909194@qq.com
The conventional ant colony algorithm is easy to fall into the local optimal in some complex environments, and the blindness in the initial stage of search leads to long searching time and slow convergence. In order to solve these problems, this paper proposes an improved ant colony algorithm and applies it to the path planning of cleaning robot. The algorithm model of the environmental map is established according to the grid method. And it built the obstacle matrix for the expansion and treatment of obstacles, so that the robot can avoid collision with obstacles as much as possible in the process of movement. The directional factor is introduced in the new heuristic function, and we can reduce the value of the inflection point of paths, enhance the algorithm precision, and avoid falling into the local optimal. The volatile factor of pheromones with an adaptive adjustment and the improved updating rule of pheromones can not only solve the problem that the algorithm falls into local optimum, but also accelerate the running efficiency of the algorithm in the later stage. Simulation results show that the algorithm has the better global searching ability, the convergence speed is obviously accelerated, and an optimal path can be planned in the complex environment.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.