Issue |
MATEC Web Conf.
Volume 336, 2021
2020 2nd International Conference on Computer Science Communication and Network Security (CSCNS2020)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 9 | |
Section | Study of Advanced Materials and Performance Analysis | |
DOI | https://doi.org/10.1051/matecconf/202133601003 | |
Published online | 15 February 2021 |
Study on flow noise characteristics of Bionic cylinder based on acoustic analogy
Systems Engineering Research Institute, Fengxian east road No.1, Haidian district, Beijing, China
* Corresponding author: cuizixian202011@163.com
The drag and noise reduction of the flow around a cylinder is one of the important topics in hydrodynamics and acoustics. In this paper, three typical bionic cylinders are designed based on the serrated structure on the surface of shark skin. Using Large eddy turbulence model and Lighthill’s acoustic analogy method, the flow noise characteristics of smooth cylinder and three kinds of bionic cylinders at different Reynolds numbers were compared, and the structure of cylinder surface was optimized. The results show that the main source of the flow noise around a cylinder is dipole noise, which is caused by the periodic fluctuating pressure on the cylinder surface.The bionic cylinder can reduce the amplitude of the fluctuating pressure, improve the wake flow field and reduce the wake vorticity, so as to reduce the noise. Among the three kinds of bionic cylinder, V-shaped bionic cylinder has the best noise reduction effect, and the critical value of S/H of V-shaped cylinder is about 2.5. When s / h > 2.5, V-shaped bionic cylinder has no effect of noise reduction.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.