Issue |
MATEC Web Conf.
Volume 336, 2021
2020 2nd International Conference on Computer Science Communication and Network Security (CSCNS2020)
|
|
---|---|---|
Article Number | 01004 | |
Number of page(s) | 8 | |
Section | Study of Advanced Materials and Performance Analysis | |
DOI | https://doi.org/10.1051/matecconf/202133601004 | |
Published online | 15 February 2021 |
Sound source location for low-altitude aircraft based on sub-band extraction
1 Graduate Group, Engineering University of PAP, Xi'an 710086, China
2 College of Information Engineering, Engineering University of PAP, Xi'an 710086, China
* Corresponding author: 28703637@qq.com
The acoustic signal of low-altitude aircraft shows regular distribution in frequency and has obvious harmonic crest of both fundamental frequency and double frequency.Therefore, this paper presents a low complexity algorithm of acoustic location based on feature sub-band extraction for low-altitude aircraft. The algorithm firstly searches the eigenfrequency points which occupy the main energy in the sound signal. Then the cost function is constructed based on the MUSIC method by the sub-band corresponding to the eigenfrequency point. Finally, the amplitude is weighted by the maximum ratio combination principle to obtain the spectral function of array space, by which DOA estimation is realized for the spatial spectrum. Simulation results show that the algorithm is less complex than traditional wide-band DOA algorithm, and its main lobe is easier to recognize and has better spatial resolution.
Key words: Sound Source location / Low-altitude aircraft / Sub-band extraction
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.