Issue |
MATEC Web Conf.
Volume 329, 2020
International Conference on Modern Trends in Manufacturing Technologies and Equipment: Mechanical Engineering and Materials Science (ICMTMTE 2020)
|
|
---|---|---|
Article Number | 03047 | |
Number of page(s) | 8 | |
Section | Mechanical Engineering | |
DOI | https://doi.org/10.1051/matecconf/202032903047 | |
Published online | 26 November 2020 |
Modelling of layer-by-layer metal removal in the digital twin of the round grinding process performed on CNC machines
South Ural State University, Department of Engineering and Technology, 454080 Chelyabinsk, Lenin Avenue 76, Russia
* Corresponding author: akintsevaav@susu.ru
Parts’ processing on circular grinding machines is carried out according to the specified stepwise control cycles of radial and axial feeds, which are laid down in the control program (CP). Despite the precise positioning systems, modern CNC circular grinding machines have a variable compliance of the technological system along the processing length. It causes different cutting depth and occurrence of various errors in dimensions of the diametric surface. Also, the dimensions error increases due to the fact that the processing of parts batch is carried out in unstable conditions and under the influence of different variable factors, which can include allowance fluctuation, blunting of the wheel grains, changes of the wheel diameter and the contact area of the wheel with the workpiece, etc. However, there are still no means of control developed CP, which include cycles of cutting modes, to ensure the accuracy of parts batch` processing. This article describes the digital twin (DT) of the circular plunge grinding with CNC, which allows simulating layer-by-layer metal removal during the whole grinding cycle by calculating the cutting depth on each workpiece revolution under various combinations of unstable processing conditions and variable compliance of TS. Modeling of layer-by-layer allowance removal is performed in several sections of the treated surface; these sections have different compliance. At the end of the grinding cycle in the DT the processing accuracy is estimated on the basis of the obtained values of radii dimensions in all sections of the processed surface. The introduction of DT allows speeding up the CP development, reduce the time of launching CP in production, and increase the productivity of circular grinding operations with CNC by optimizing the cycles of the cutting modes while ensuring the specified processing accuracy.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.