Issue |
MATEC Web Conf.
Volume 329, 2020
International Conference on Modern Trends in Manufacturing Technologies and Equipment: Mechanical Engineering and Materials Science (ICMTMTE 2020)
|
|
---|---|---|
Article Number | 03013 | |
Number of page(s) | 6 | |
Section | Mechanical Engineering | |
DOI | https://doi.org/10.1051/matecconf/202032903013 | |
Published online | 26 November 2020 |
Numerical simulation of conjugated heat exchange in the turbulent motion of fluid in an oil well
Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 34, T. Baramzinoy St., Izhevsk, 426067, Russia
* Corresponding author: ssmak15@mail.ru
The mathematical model of conjugate heat exchange is proposed for the turbulent movement of reservoir oil in a vertical well section. The motion of the medium is described using a two-dimensional axisymmetric stationary formulation and boundary layer equations. The movement of the turbulent flow of reservoir oil due to reservoir energy is presented. The liquid medium is a mixture of reservoir oil with dissolved gas and formation water. The results of the numerical modeling are presented in the form of dependences of the changing flow rate, temperature, and mass fraction of paraffin deposits that occur along the full vertical extent of the well. The results obtained describe the thermobaric state of the well under the condition of conjugate heat exchange between the fluid flow and the production pipe.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.