Issue |
MATEC Web Conf.
Volume 329, 2020
International Conference on Modern Trends in Manufacturing Technologies and Equipment: Mechanical Engineering and Materials Science (ICMTMTE 2020)
|
|
---|---|---|
Article Number | 02023 | |
Number of page(s) | 7 | |
Section | Materials Science | |
DOI | https://doi.org/10.1051/matecconf/202032902023 | |
Published online | 26 November 2020 |
Improving the mechanical properties of zirconia in instrument bearings
1 Mechanical Engineering Research Institute of the Russian Academy of Sciences, 119334, 4 Bardina st, Moscow, Russia
2 Diethelm Research, 8001, Hornbachstrasse 50, Zurich, Switzerland
3 Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991, 38 Vavilov st, Moscow, Russia
* Corresponding author: vva-imash@yandex.ru
The article presents the issues of replacing leucosapphires in jeweled bearings of the axes of precision instruments with nanostructured crystals of partially stabilized zirconia. The statement is substantiated that doping with rare earth elements provides an improvement in the performance properties of precision instruments by improving the mechanical properties of bearing materials. The efficiency of doping of zirconia crystals with cerium and neodymium oxides is studied. It was found that doped crystals have increased plasticity, which provides an increase in the crack resistance of crystals. Special attention is paid to the issues of increasing the survivability of high-speed rotor bearings by replacing the thrust bearing of leucosapphire with nanostructured crystals of partially stabilized zirconia doped with cerium and neodymium. The efficiency of improving the mechanical properties is confirmed by the X-ray phase analysis of crystals. The phase composition is studied by Raman scattering and the lattice parameters are determined. The increased crack resistance of the thrust bearing is confirmed by tests performed using the kinetic microhardness method.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.