Issue |
MATEC Web Conf.
Volume 328, 2020
XXII. International Scientific Conference – The Application of Experimental and Numerical Methods in Fluid Mechanics and Energy 2020 (AEaNMiFMaE-2020)
|
|
---|---|---|
Article Number | 01009 | |
Number of page(s) | 9 | |
Section | Measurement and Calculation of State Variables in the Fluid Flow | |
DOI | https://doi.org/10.1051/matecconf/202032801009 | |
Published online | 18 November 2020 |
Simulation of Steady States of Helium Loop at Long Time Scenarios
Slovak University of Technology in Bratislava, Faculty of Mechanical Engineering, Institute of Energy Machinery, Nám. slobody 17, 812 31 Bratislava, Slovakia
* Corresponding author: frantisek.vilagi@stuba.sk
The natural circulation helium loop is an experimental facility designed for the research of the possibility of utilizing natural convection cooling for the case of decay heat removal from a fast nuclear reactor. This concept would bring an improved automated safety system for future nuclear power plants operating a gas-cooled reactor. The article presents a new possibility of direct use of energy conservation laws in a 1D simulation of natural circulation loops. The calculation is performed by a triple iteration process, nested into each other. The results of the calculations showed good agreement with the measurements at steady state. A calculation with the proposed model at unsteady state is not yet possible, especially because of the exclusion of heat accumulation into the material.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.