Issue |
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
|
|
---|---|---|
Article Number | 11083 | |
Number of page(s) | 6 | |
Section | Microstructure - Properties Relationships | |
DOI | https://doi.org/10.1051/matecconf/202032111083 | |
Published online | 12 October 2020 |
Predicting the tensile properties of additively manufactured Ti-6Al-4V via electron beam deposition
1 Iowa State University, Ames, IA, United States
2 Ohio State University, Columbus, OH, United States
3 The Boeing Company, St. Louis, MO, United States
4 Lehigh University, Bethlehem, PA, United States
5 University of Notingham, Notingham, United Kingdom
Additively manufactured materials are gaining wide attention owing to the manufacturing benefits as it results in near net shape components. It is well known that the manufacturing processes affects the performance of the components via microstructural features and the mechanical properties. There is an urgent need to understand the processing-structure-property-performance relationship for the materials manufactures via such innovative techniques. Strategies are needed to quantify and modify the mechanical properties. This study assists to design and tailor the process parameters based on the final properties required. Current work predicts the yield strength of additively manufactured Ti-6Al-4V with different post heat treatments. A thermal model predicted by ABAQUS is fed into an implementation of Langmuir equation that predicts the chemistry which is then used in a phenomenological equation predicting the yield strength. The model is confirmed via experiments showing less than 2% deviation from the predicated properties. A statistical model gives design allowables that have an uncertainty of less than 1 ksi.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.