Issue |
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
|
|
---|---|---|
Article Number | 11059 | |
Number of page(s) | 6 | |
Section | Microstructure - Properties Relationships | |
DOI | https://doi.org/10.1051/matecconf/202032111059 | |
Published online | 12 October 2020 |
Deformation mechanisms and effect of oxygen addition on mechanical properties of Ti-7.5Mo alloy with α” martensite
National Institute for Materials Science, Tsukuba, Japan
Effect of oxygen content as an important interstitial solute on the microstructure and mechanical properties of Ti-7.5Mo alloy was investigated. With increasing the oxygen content, the yielding strength, ultimate tensile strength and Young’s modulus of Ti-7.5Mo-xO (x=0, 0.2, 0.3, 0.4, 0.5) alloys increased, while the elongation showing a decreasing tendency. Solid-solution strengthening by the oxygen atoms has been addressed as the main strengthening mechanism. Ti-7.5Mo-xO (x ≤ 0.3) alloys have been regarded with an excellent combination of high yield strength (~640 MPa) and elongation (~28%), as well as low Young’s modulus (~60 GPa). The deformation microstructure of orthorhombic-α” martensite in Ti-7.5Mo alloy was also investigated by tracking a change in the microstructure of a selected area upon tensile deformation. Deformation twins induced by 5% tensile straining was identified as {112}α”-type I twins, which had not been reported before in α”martensite in β-Ti alloys.
Key words: β-Titanium alloys / biomaterials / orthorhombic-α” martensite / oxygen / deformation twinning
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.