Issue |
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
|
|
---|---|---|
Article Number | 11009 | |
Number of page(s) | 6 | |
Section | Microstructure - Properties Relationships | |
DOI | https://doi.org/10.1051/matecconf/202032111009 | |
Published online | 12 October 2020 |
Local lattice strain around alloying element and martensitic transformation in titanium alloys
Nagoya University, Nagoya, 464-8603, Japan
Local strain is introduced into the lattice around solute atom due to the size mismatch between solute and solvent atoms in alloy. In this study, local lattice strains are calculated for the first time in titanium alloys, using the plane-wave pseudopotential method. As an extreme case, the local lattice strain around a vacancy is also calculated in various bcc, fcc and hcp metals. It is found that the local strain energy is very high in both bcc Ti and bcc Fe, where the martensitic transformation takes place. From a series of calculations, it is shown that the magnitude of the strain energy stored in the local lattice is comparable to the thermal energy, kBT, where kB is the Boltzmann constant and T is the absolute temperature. Therefore, the presence of local lattice strains in alloy could influence the phase stability that varies largely depending on temperatures. For example, the local lattice strain correlates with the martensitic transformation start temperature, Ms, in binary titanium alloys.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.