Issue |
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
|
|
---|---|---|
Article Number | 05018 | |
Number of page(s) | 8 | |
Section | Biomedical and Healthcare Applications | |
DOI | https://doi.org/10.1051/matecconf/202032105018 | |
Published online | 12 January 2021 |
Effect of Nb addition on high-temperature oxidation behavior, oxide layer structure, and its exfoliation resistance of Ti-Nb Alloys
1 Graduate School of Engineering, University of Hyogo, Himeji, Hyogo, Japan
2 Graduate School of Engineering, Meijo University, Nagoya, Aichi Japan
3 Graduate School of Engineering, Tohoku University, Sendai, Miyagi Japan
4 Graduate School of Engineering, Nagoya University, Nagoya, Aichi Japan
5 Graduate School of Engineering, Osaka University, Osaka, Japan
The authors proposed an oxide coating on Ti alloys for the dental abutment tooth, and they had reported that Ti–29Nb–13Ta–4.6Zr (TNTZ) alloy forms a dense oxide layer by high-temperature oxidation. On the other hand, CP Ti forms a multilayered oxide consisted of rutile monolayers and the void layer. This morphological change by alloying is supposed to be mainly caused by Nb addition in Ti since the dense oxide layer of TNTZ mainly consists of rutile TiO2 and TiNb2O7.
Therefore, in this study, oxidation behaviors of various range of Nb content of Ti-xNb alloys (x = 1 ~ 32 mol%) were investigated, and exfoliation resistance was evaluated. And in this paper, the oxide/metal interfacial microstructure of oxidized CP Ti, TNTZ alloy, and Ti-Nb alloy was studied by a transmission electron microscopy (TEM) and by a scanning transmission electron microscopy with an electron dispersive spectroscopy (STEM-EDS).
The cross-sectional observations suggested that the substrate was gradually oxidized during heat treatment, and nucleation and grain growth of TiO2 and TiNb2O7 proceed at the metal/oxide interface. Consequently, the gradual oxidation process in TNTZ and Ti-Nb alloys could lead to its continuous interfacial microstructure and dense oxide structure, which can achieve high exfoliation resistance.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.