Issue |
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
|
|
---|---|---|
Article Number | 05003 | |
Number of page(s) | 4 | |
Section | Biomedical and Healthcare Applications | |
DOI | https://doi.org/10.1051/matecconf/202032105003 | |
Published online | 12 October 2020 |
Development of α+β-type biomedical Ti–Nb alloys with high oxygen content
Department of Materials Processing, Tohoku University, Sendai, Japan
Ti-(5–20)Nb-(0.5–1)O alloys (mass%) were investigated for developing low-cost biomedical α+β-type Ti alloy. Ti-(5, 10, 15, 20)Nb-(0.5, 0.75, 1)O alloys (mass%) were arc-melted and forged into bars. The forged alloy bars were heat-treated at 873 to 1373 K for 3.6 ks in an Ar atmosphere and quenched in iced water. β transus (Tβ) of the Ti-Nb-O alloys decreased with increasing Nb content. An increase in the oxygen content led to an increase in Tβ. After quenching, the formation of α′ martensite was observed in Ti-5Nb-yO alloys. An increase in the Nb content to 10 mass% led to the formation of α′ and α″ martensites. A further increase in the Nb content to 15 and 20mass% resulted in the formation of more α″ martensites. The boundary temperature for the formation of α′ and α″ martensite in the Ti-10Nb-yO alloys increased with increasing oxygen content, because oxygen enhances the Nb distribution to the β phase. The ultimate tensile strength of the Ti-xNb-0.75O alloys heattreated to obtain the α-phase fraction (fα) of 0.5 was over 1000 MPa, except for the Ti-15Nb-0.75O alloy. The total elongation decreased with increasing Nb content. The Ti-5Nb-0.75O alloy exhibited excellent strength-ductility balance as a low-cost α+β-type biomedical Ti alloy.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.