Issue |
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
|
|
---|---|---|
Article Number | 03014 | |
Number of page(s) | 10 | |
Section | Additive and Near Net Shape Manufacturing | |
DOI | https://doi.org/10.1051/matecconf/202032103014 | |
Published online | 12 October 2020 |
Microstructure and Properties of 3D Ti-6Al-4V Articles Produced with Advanced Co-axial Electron Beam & Wire Additive Manufacturing Technology
1 JSC NVO Chervona Hvilya, (Kyiv, Ukraine)
2 G. V. Kurdyumov Institute for Metal Physics (Kyiv, Ukraine)
Ti-6Al-4V articles were produced with advanced additive manufacturing technology of Direct Energy Deposition (DED) type using profile electron beam and wire as feedstock material. The key distinctive feature of this additive manufacturing process is the applying of the hollow conical electron beam generated by low-voltage (<20kV) gas-discharge EB gun for heating and melting of the substrate and co-axially fed wire. Such configuration ensures precisely controllable liquid metal transfer from the wire end to the substrate, specific temperature gradients at the fusion area and heat flow from liquid metal pool. Such conditions of heating, melting and cooling during 3D manufacturing processing provide the ability for controllable microstructure formation, including grain size and material texture.
Influence of processing parameters and cooling conditions on crystallization, grain formation and intragrain structure of solidified material is discussed. Optimization of processing parameters allowed production of 3D Ti-6Al- 4V articles with isotropic microstructure and mechanical properties which met standard requirements for Ti-6Al-4V alloy.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.