Issue |
MATEC Web Conf.
Volume 317, 2020
7th International BAPT Conference “Power Transmissions 2020”
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 7 | |
Section | Design, Analysis, Simulation and Optimization | |
DOI | https://doi.org/10.1051/matecconf/202031701006 | |
Published online | 03 August 2020 |
Design and construction of a continuous impregnation apparatus of woven fibres, using non-meshing double-sinusoidal toothed rollers
1 School of Mechanical Engineering, National Technical University of Athens – NTUA
2 Department of Mechanical Engineering Educators, School of Pedagogical and Technological Education – ASPETE
* Corresponding author: gvasileiou@mail.ntua.gr
Resin-impregnated fibres are extensively used in a variety of industrial applications as is demonstrated in the literature. Resin-fibre impregnation techniques are used in order to create homogeneous macro – materials and to take full advantage of the mechanical properties of the fibrous reinforcement (i.e. carbon, glass, organic or ceramic fibres). However, achieving highly impregnated fibres is proven quite challenging especially in continuous production techniques that are required for large production rates. The main challenge lies in achieving complete impregnation of the tightly arranged fibres mainly referring to the formed yarns containing multiple fibres, sometimes even twisted. This results in partially impregnated materials containing cavities that tend to exhibit inferior mechanical properties compared to the theoretical calculations, which assume fully impregnated materials. These cavities often lead to crack generation, acting as stress concentration sites, resulting in complete failure of the material at macro-level. In this paper a novel technique for continuous production of fully impregnated woven fibres is presented using non – meshing, co – rotating rollers. A laboratory-scale apparatus is designed and described thoroughly in the context of this work. The method resembles pultrusion in the sense that a reinforcement plain fibre mesh (glass) is co–processed with the liquid resin through a pair of co–rotating toothed rollers to produce a continuously reinforced 3D tape. The surface of the rollers is produced from a double-sinusoidal toothed surface (rack) using the Theory of Gearing in three-dimensions, which imposes significant differential sliding of the fibres without differential tension and facilitates fibre wetting. The geometry of the rollers is calculated not to damage the unprocessed fibres, while facilitating local widespreading of the stranded fibres in the three – dimensional space leading to the resin being able to fully penetrate the reinforcing fibre material.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.