Issue |
MATEC Web Conf.
Volume 304, 2019
9th EASN International Conference on “Innovation in Aviation & Space”
|
|
---|---|---|
Article Number | 02008 | |
Number of page(s) | 8 | |
Section | Flight Physics: Noise & Aerodynamics | |
DOI | https://doi.org/10.1051/matecconf/201930402008 | |
Published online | 17 December 2019 |
A novel technique for hypersonic vehicle control
1
UAV integrated Research Center (UAV–iRC), Center for Interdisciplinary Research and Innovation (CIRI), Aristotle University of Thessaloniki,
57001,
Thessaloniki,
Greece
2
Laboratory of Fluid Mechanics and Turbomachinery, Department of Mechanical Engineering, Aristotle University of Thessaloniki,
54124,
Thessaloniki,
Greece
* Corresponding author:
kyak@auth.gr
A novel control technique is investigated for hypersonic aerial vehicles. The technique is based on the use of active shock bumps (SBs) as a form of control device. The SBs deflect to create shockwaves on–demand, at specific locations around the aerial vehicle. As a result, a force is applied on the aerial vehicle, which in turn is used to provide the necessary moment for pitch and roll manoeuvres. In this work, a preliminary aerodynamic analysis of the SB device technique is made by means of CFD. For this purpose, and taking the large corresponding Reynolds numbers of the flow into consideration, the two–dimensional Euler equations are solved. A parametric investigation is carried out, by examining the effect of key parameters, namely the Mach number (M) and device deflection angle (δSB) on the produced force acting on the vehicle, serving as a proof of concept. Using a specific interpolation method, the resultant force is presented as a function of the Mach number and the device deflection angle, on three–dimensional charts, where the effect of each parameter is shown (force–Mach–deflection maps). Furthermore, a preliminary feasibility study is performed, including a kinematic analysis and some key material considerations. Additionally, a kinetic analysis is also conducted to secure the dynamic rigidity of the actuating mechanism and provide an initial estimation concerning weight and basic geometrical parameters of the SB mechanism components.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.