Issue |
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
|
|
---|---|---|
Article Number | 08005 | |
Number of page(s) | 9 | |
Section | LCF or Cyclic Behaviour | |
DOI | https://doi.org/10.1051/matecconf/201930008005 | |
Published online | 02 December 2019 |
On the phase angle role in the shear response of ZK60 Mg alloys under multiaxial fatigue
Deparment of Mechanical & Mechatronics Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
* Corresponding author: ali.karparvarfard@uwaterloo.ca
Proportional and non-proportional multiaxial fatigue tests are conducted on the closed-die forged ZK60 extrusion. The shear strain amplitude was kept constant at 0.5% for all the tests, while two different axial strain amplitudes of 0.4% and 0.7% were considered. At the higher strain amplitude (0.7%) significant difference was observed between the torque amplitudes of proportional and non-proportional tests, whereas the axial load amplitude responses remained the same regardless of the phase angle shifts. It is likely that as the phase angle changes from 0-90, the twin volume fraction at the peak shear strain decreases resulting in higher torque responses. On the other hand, at the lower strain amplitude, i.e. 0.4%, where twinning is not active, phase angle does not show any effect on the shear response. An energy-based fatigue model is employed that effectively explains the different damage contributions by the axial and torsional loadings at different strain amplitudes, and accurately predicts the proportional and non-proportional multiaxial fatigue lives.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.