Issue |
MATEC Web Conf.
Volume 298, 2019
International Conference on Modern Trends in Manufacturing Technologies and Equipment: Mechanical Engineering and Materials Science (ICMTMTE 2019)
|
|
---|---|---|
Article Number | 00146 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/matecconf/201929800146 | |
Published online | 18 November 2019 |
Application of ultrasonic testing method for determining defects of hot-deformed powder materials
Don state technical University, Rostov-on-don, Russia
* Corresponding author: aquavdonsk@mail.ru
The article is devoted to the analysis of elastic and plastic characteristics of composite materials during hot stamping. The purpose of this work is to offer optimal conditions for hot plasticity of composite porous material with determination of temperature conditions of hot stamping excluding the appearance of defects in the structure. Production of details of the difficult form by method of hot stamping from preparations of the cylindrical form is followed by development of barrel on a peripheral surface. Sludge sintered porous blanks, and sediment compact material, accompanied by a nonuniform height lateral deformation. In connection with the action of friction forces on the contact surfaces, this leads to the formation of a “barrel”. The heterogeneity of the deformed state is associated with the appearance of tangential tensile stresses on the free surface of the workpiece. If they exceed some critical degree of transverse deformation, cracks appear on the side surface, which leads to gas saturation (oxidation) of the inner layers of the forging, to the ingress of grease into them and its pressing into the volume of the part during hot stamping. In the end, this significantly reduces the properties of hot-stamped parts. Conclusion: the methods of determining the elastic characteristics depending on the geometric parameters of the workpieces, the applied strain energy, body density and temperature dependence of the plasticity characteristics of the hot deformation of the powder material are сonsidered.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.