Issue |
MATEC Web Conf.
Volume 297, 2019
X International Scientific and Practical Conference “Innovations in Mechanical Engineering” (ISPCIME-2019)
|
|
---|---|---|
Article Number | 09007 | |
Number of page(s) | 7 | |
Section | Processes Abrasive Machining, Abrasive Tools and Materials | |
DOI | https://doi.org/10.1051/matecconf/201929709007 | |
Published online | 13 November 2019 |
Theoretical-Probability Model of Metal Removal During Magnetic-Abrasive Treatment
I.I. Polzunov Altai State Technical University, 656038 Barnaul, 46 Lenin Avenue, Russian Federation
* Corresponding author: sergey_and_nady@mail.ru
The work is devoted to the issue of calculating material removal during magnetic abrasive processing. Cutting grains have random dimensional characteristics, are randomly located on the surface of the tool, the workpiece has an irregular profile. The cutting parts of the grain tops partially remove the chips, and partially elastically-plastic deform the metal. Part of the vertices falls into the risks on the surface of the workpiece formed by the previous machining, and part -into the risks from passing through the previous vertices. This process is determined by the probability of the contact of the top of the grain with the metal. The developed stochastic models make it possible to predict the removal of metal from the treated surface depending on the time and parameters of the operation, which creates the prerequisites for their use in the design of polishing operations.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.