Issue |
MATEC Web Conf.
Volume 290, 2019
9th International Conference on Manufacturing Science and Education – MSE 2019 “Trends in New Industrial Revolution”
|
|
---|---|---|
Article Number | 12011 | |
Number of page(s) | 11 | |
Section | Safety and Health at Work | |
DOI | https://doi.org/10.1051/matecconf/201929012011 | |
Published online | 21 August 2019 |
Sensitivity to ignition by electrostatic discharge of explosive dust / air
National Institute for Research and Development in Mine Safety and Protection to Explosion – INSEMEX, 32-34 G-ral Vasile Milea Street, Petroşani, 332047, Romania
* Corresponding author: dan.gabor@insemex.ro
In industrial sectors that use, process, transport or store, substances such as combustible dusts could exist some workplaces with explosion hazard due to the possibility of dust/air explosive formation and ignition, both inside the installations and in the surrounding atmosphere. Methods and means of protection aim to prevent the development of explosive atmospheres, followed by preventing the occurrence of ignition sources and then limiting the effects of explosions. To assess the risk of ignition of the explosive atmosphere, there must be known first of all, the explosive atmosphere’s sensitivity to ignition by electrostatic discharge, respectively, the minimum ignition energy of the explosive mixture, afterwards being required an analysis on the possibilities of formation and discharge of electrostatic charge. For the most common combustible dusts, the minimum ignition energy is given, but for new types of flammable substances this parameter defining the sensitivity to ignition of the mixture by electrostatic discharges must be determined. The paper presents the results of research carried out in order to develop the methods and standards for determining the minimum ignition energy of the combustible dust / air mixture and of the methods for the assessment of the risk of ignition of the dust/air explosive atmosphere by electrostatic discharge.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.