Issue |
MATEC Web Conf.
Volume 282, 2019
4th Central European Symposium on Building Physics (CESBP 2019)
|
|
---|---|---|
Article Number | 02089 | |
Number of page(s) | 7 | |
Section | Regular Papers | |
DOI | https://doi.org/10.1051/matecconf/201928202089 | |
Published online | 06 September 2019 |
Dependencies of heat transmittance through the ventilated wall system on thermal conductivity of connectors crossing thermal insulation layer
Kaunas University of Technology, Institute of Architecture and Construction, Tunelio st. 60, LT-44405 Kaunas, Lithuania
* Corresponding author: aurelija.levinskyte@ktu.lt
The ventilated facade systems are widely used for improvement of energy efficiency and reducing of heat losses of newly built buildings and for existing buildings. To reduce the influence of point thermal bridges on heat transfer through the ventilated facades, previous often used aluminium alloy connectors as a change to stainless steel and reinforced plastic connectors. Different thermal characteristics of connectors using in ventilated facade systems, significantly influence the heat transfer coefficient of building’s walls. Previous empirical calculations of the heat transfer through ventilated facade walls with different connectors according to standard methodology and numerical modelling showed significant differences in results, therefore experimental research with the fragments of the ventilated facade systems were carried out using a guarded hotbox method.
The aim of this experimental research was to analyse the heat flows through the ventilated wall system with different kind of heat-conductive connectors. Expanded polystyrene foam (λ – 0,031 W/(m∙K)) was used as thermal insulation material, thickness 300 mm, and three types of heat-conductive connections were installed: aluminum alloy (λ - 160 W/(m∙K)), stainless steel (λ - 17 W/(m∙K)) and glass fiber reinforced plastic (λ – 0,23 W/(m∙K)).
The measurements in the guarded hotbox were useful for analysis of differences in results according to the standard and numerical calculations methods. The experimental studies showed that the results are very close to the numerical simulation results. The empirical calculation method gave similar results to the other two methods, except in the case of highly heat-conductive connectors.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.