Issue |
MATEC Web Conf.
Volume 282, 2019
4th Central European Symposium on Building Physics (CESBP 2019)
|
|
---|---|---|
Article Number | 02088 | |
Number of page(s) | 6 | |
Section | Regular Papers | |
DOI | https://doi.org/10.1051/matecconf/201928202088 | |
Published online | 06 September 2019 |
Generative reverse-modelling approach to hygrothermal material characterization
1 Tallinn Univ. of Technology, Dept. of Civil Engin. and Arch., Ehitajate tee 5, Tallinn, Estonia
2 TU Dresden, Institute for Building Climatology, Zellescher Weg 17, 01069 Dresden, Germany
* Corresponding author: paul.kloseiko@taltech.ee
Reliable hygrothermal modelling depends on the quality of material characterization, especially so when higher moisture contents are concerned. Previous research has shown that adding additional material tests (e.g. capillary condensation redistribution (CCR) test) to the experimental dataset brings improvements to the modelling accuracy, but also adds to the workload of characterization process. This paper discusses a generative optimization workflow to increase the speed of the characterization and quality of the result. The proposed workflow incorporates optimization tool GenOpt and hygrothermal modelling software IBK Delphin to search for best fit of the water vapour and liquid conductivity curves of interior insulation materials based on modelling the CCR, drying and wet cup tests. Finally, models using material data from the proposed workflow and from the software database are compared to measurement results from two studies on interior thermal insulation. The results suggest that the generative optimization shows promise on the grounds of reducing tedious work analysing material tests. Also, a wider experimental dataset is shown to be useful when characterizing the vapour and liquid conductivity functions in over-hygroscopic region.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.