Issue |
MATEC Web Conf.
Volume 280, 2019
The 5th International Conference on Sustainable Built Environment (ICSBE 2018)
|
|
---|---|---|
Article Number | 04012 | |
Number of page(s) | 10 | |
Section | Green Infrastructure | |
DOI | https://doi.org/10.1051/matecconf/201928004012 | |
Published online | 08 May 2019 |
Durability of RC Beams Strengthened Using GFRP-Sheet due to Fatigue Loads
1 Khairun University, Assoc. Professor of Civil Engineering Department, 97716 Ternate, Indonesia
2 Sekolah Tinggi Teknik Baramuli, Lecturer, 91214 Pinrang, Indonesia
3 Hasanuddin University, Professor of Civil Engineering Department, 90245 Makassar, Indonesia
* Corresponding author: arbatata@yahoo.co.id
This paper presented the results of an experimental study of the behaviour of flexural beams strengthened with the glass fiber reinforced polymer (GFRP-S). This research was carried out to determine the effect of fatigue loads on the flexural capacity of reinforced concrete beams. The specimens were rectangular with a dimension of 150 mm in width, 200 mm in height, and 3300 mm in length. Four distinct conditions had been applied to this experiment. For the initial condition, two beams were tested under monotonic loads (maximum load control) as a control beam (BN). Sinusoidal fatigue loads were applied to four specimens from 4 kN to 24 kN (BF). Our comparative results of the experiment had presented that the normal beams (BN) failed after 800,000 loads cycle, while, the reinforced beams with GFRP (BF) failed after 1,231,860 loads cycle. Based on our results, it can be stated generally that fatigue life of the reinforcement beams (BF) could increase to more than 100% compared to that of the normal beams (BN). The failure of the beams is probably caused by fatigue of the reinforcement bar and debonding of the GFRP-S, both are secondary failure mechanism of reinforced concrete beams.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.