Issue |
MATEC Web Conf.
Volume 276, 2019
International Conference on Advances in Civil and Environmental Engineering (ICAnCEE 2018)
|
|
---|---|---|
Article Number | 06012 | |
Number of page(s) | 12 | |
Section | Environmental Engineering | |
DOI | https://doi.org/10.1051/matecconf/201927606012 | |
Published online | 15 March 2019 |
Preparation of alkali-activated fly ash-based geopolymer and their application in the adsorption of copper (II) and zinc (II) ions
1 Department of Environmental Engineering, Institut Teknologi Bandung, Bandung, Indonesia
2 Department of Civil Engineering, Universitas Riau, Pekanbaru, Indonesia
3 Division of Inorganic and Physical Chemistry, Institut Teknologi Bandung, Bandung, Indonesia
* Corresponding author: darmayanti2708@gmail.com
Alkali activation of fly ash can a promising alternative of the system to improve adsorption capability of fly ash. In finding the best chemical composition of the activator solution, geopolymer has been synthesized using molar ratios of Na2O/SiO2 0.16, 0.3, and 0.5 (Gr1, Gr3, Gr5). The results indicated that the geopolymer synthesized with a ratio molar of Na2O/SiO2 0.3 (Gr3) improved the adsorption properties of fly ash substantially. Gr3 was characterized by BET, XRD, and FTIR. The batch experiment was conducted at the different duration and initial concentrations. The equilibrium sorption data were fitted for the Langmuir and Freundlich equations. The maximum sorption capacities calculated from Langmuir isotherm was 54 mg g-1 and 47 mg g-1 for Cu (II) and Zn (II) respectively. The kinetic data reveal that the pseudo-second order model was appropriate for a description of the kinetic performance.
© Owned by the authors, published by EDP Sciences, 2012
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.