Issue |
MATEC Web Conf.
Volume 272, 2019
2018 2nd International Conference on Functional Materials and Chemical Engineering (ICFMCE 2018)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/matecconf/201927201002 | |
Published online | 13 March 2019 |
Generalized active disturbance rejection control for the boiler-turbine unit using multi-objective optimization and extended state observer
1 Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Sipailou 2, Nanjing 210096, China
2 School of Electric Power Engineering, Nanjing Institute of Technology, Hongjing Road 2, Nanjing 211167, China
3 Department of Chemical and Biological Engineering, Univerisity of Sheffield, Sheffield S1 3JD, UK
* Corresponding author: shenj@seu.edu.cn
This paper proposes a generalized active disturbance rejection controller (GADRC) based hierarchical control structure for the boilerturbine unit. In the lower layer, a multivariable extended state observer (MESO) is developed to estimate the values of the lumped disturbances caused by modelling mismatches, fuel quality variation and wide range load variation. The influence of the disturbances is then compensated at the input side as a feedforward control. In the upper layer, the multi-objective optimization is devised to obtain the set-points by removing the plant behaviour variation from the optimized model in a feasible way. The lowpass filter acting on the lumped disturbances is designed to bridge the gap between the lower and upper layer. The impact of the feedthrough item is approximated by a first-order system and a two degree-of-freedom (2-DOF) control strategy is established to illustrate the set-point tracking and disturbance rejection properties of the controller. Simulation studies on a 1000MWe coal-fired ultra-supercritical boiler-turbine unit demonstrate that the proposed control strategy can achieve a satisfactory performance in cases of fuel quality variations, model-plant mismatches and wide range load variation.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.