Issue |
MATEC Web Conf.
Volume 269, 2019
IIW 2018 - International Conference on Advanced Welding and Smart Fabrication Technologies
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 6 | |
Section | Welding Technologies | |
DOI | https://doi.org/10.1051/matecconf/201926901002 | |
Published online | 22 February 2019 |
Effect of Double Pulse MIG Welding on Porosity Formation on Aluminium 5083 Fillet Joint
1
Department of Industrial Engineering, Faculty of Engineering, Mahidol University
2
Department of Industrial Engineering, Faculty of Engineering, Nakhon Phanom University
Corresponding author: Eakkachai.war@mahidol.ac.th
In this article, parameters of Double-Pulse Metal Inert Gas Welding (DP-MIG) was used for minimising a porosity formation in a T-joint fillet weld. AA5083-H112 aluminium alloy (Non-heat treatable series) with the plate thickness of 10 millimetres is base metal for this study. Welding consumables were filler wire ER5356 with a diameter of 1.2 millimetres and shielded by industrial argon gas. Three majorities parameter of DP-MIG were Delta wire feed (m/min), Frequency (Hz) and Duty cycle (%). Measurable signal current pattern and opened porosity on the fractured surface were couple observed to study their relationships. An appropriate image processing technique was employed to quantitative measuring and calculating a size grouping area of several opened porosities overall weld length, precisely. The result found that the optimal was used a low-level of Delta wire feed of 0.8 m/min, a high-level of a frequency of 5.0 Hz, a mid-level of the duty cycle 30 % and a high travel speed 60 cm/min could minimise the porosity formation with complete penetration.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.