Issue |
MATEC Web Conf.
Volume 268, 2019
The 25th Regional Symposium on Chemical Engineering (RSCE 2018)
|
|
---|---|---|
Article Number | 06012 | |
Number of page(s) | 4 | |
Section | Process for Energy and Environment | |
DOI | https://doi.org/10.1051/matecconf/201926806012 | |
Published online | 20 February 2019 |
Optimization of microwave-assisted alkaline pre-treatment method for the cellulolytic fermentation of abaca stripping waste into glucose
Department of Chemical Engineering, Bicol University, Legazpi City, Albay, 4500, Philippines
Corresponding author: jrbarajas12@gmail.com
Abaca fiber remains a vital export product that contributes primarily to the continuous economic growth of the Philippines. However, the voluminous amount of byproducts generated has consistently caused setbacks which often result to major losses to the growing abaca industry in the country. In an attempt to provide a practical solution to the emerging problem, we investigate the utilization of abaca stripping waste (ASW) as a precursor material to produce bioethanol. We test the extent of conversion of the hemicellulose-rich by product to glucose. A box-behnken experimental design was used to obtain the optimal conditions in the conversion process. Alkaline concentration (%), microwave power (W), and microwave time (min) were found to have significant influence on the glucose yield. Actual values of these independent variables were chosen on the basis of preliminary experimental results. Optimum conditions using ridge analysis were found to be: alkaline concentration 2.55%, microwave power 124.0 W, and microwave time at 1.0 min. Conversion to glucose was also performed at optimum conditions. In conclusion, a high glucose yield obtained which is suitable for bioethanol fermentation presents evidence encouraging the utilization of abaca stripping waste to produce high value products.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.