Issue |
MATEC Web Conf.
Volume 258, 2019
International Conference on Sustainable Civil Engineering Structures and Construction Materials (SCESCM 2018)
|
|
---|---|---|
Article Number | 05025 | |
Number of page(s) | 7 | |
Section | Structural Dynamics and Earthquake Engineering, Structures in Severe Environment, Structural Analysis | |
DOI | https://doi.org/10.1051/matecconf/201925805025 | |
Published online | 25 January 2019 |
Nonlinear finite element and fiber element analysis of concrete filled square steel tubular (cfst) under static loading
1 Civil Engineering Departement, Faculty of Engineering, Universitas Negeri Semarang (UNNES), Indonesia
2 Institute for Infrastructure Engineering, Sustainability and Management (IIESM), Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
* Corresponding author: mahmud.kori@mail.unnes.ac.id
The combination of thin-walled steel structure with concrete infill can be used as the alternative material properties in the building in Indonesia. This composite material is suitable for seismic-resistant building because it has more ductility than conventional material. In the tsunami event, some tsunami debris strikes the building and induced partial or full collapse of the building. The loading tip shape of tsunami debris which contacts to a tubular surface affects the local deformation or buckling mode of the thin-walled structures. In order to investigate the effects, we conducted three-dimensional nonlinear finite element analyses of concrete filled square steel tubular members subjected to concentrated lateral loads by using the finite element analysis (FEM) program MSC Marc/Mentat. The fiber element analysis is also performed to reduce the analysis time of FEM and simplify the analysis. The accuracy of the FEM and fiber element analysis is verified by the experiment. Being based on the parametric numerical study, it discusses the effect of axial load on the load-deflection relations. It shows that the higher the axial load, the more degradation the ductility of the structure.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.