Issue |
MATEC Web Conf.
Volume 258, 2019
International Conference on Sustainable Civil Engineering Structures and Construction Materials (SCESCM 2018)
|
|
---|---|---|
Article Number | 05026 | |
Number of page(s) | 6 | |
Section | Structural Dynamics and Earthquake Engineering, Structures in Severe Environment, Structural Analysis | |
DOI | https://doi.org/10.1051/matecconf/201925805026 | |
Published online | 25 January 2019 |
Numerical study of inelastic buckling behavior of rectangular steel plates with circular openings under shear forces
Department of Civil Engineering, Faculty of Engineering, Parahyangan Catholic University, Bandung, Indonesia
* Corresponding author: suryoatm@unpar.ac.id
Cellular steel beam is flanged steel beam with circular openings of uniform diameter and distance between each opening. The main benefit of such beam is to reduce the structural weight without reducing the strength significantly. A rectangular steel plate with circular opening is frequently used as a model of a web panel of such beam with vertical web stiffeners. The dimension of the plate is the dimension of the web bounded by top and bottom flanges and two adjacent vertical stiffeners. In this research, finite element method is utilized to perform inelastic buckling analyses of rectangular steel plates with circular openings under shear forces along all four edges assuming steel as elastic-perfectly-plastic material with yield stress of 250 MPa. Both nonlinear geometry and nonlinear material are considered in the analyses. The objective of this research is to study buckling behavior of the plate in terms of buckling mode, critical load, and Von Mises (effective) stress distribution. The buckling shear loads of the plates of various length-to-width ratios of the plate (1.0, 1.25, and 1.50) and various opening-diameter-to-plate-width ratios (0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50) have been obtained from the analyses. The deformation and Von Mises stress distribution at every load level have been obtained as well from the finite element analyses. Equation to predict inelastic buckling shear force of a rectangular steel plates with circular opening under shear forces is proposed in this study. Verification of the method has been performed by comparing shear buckling loads resulted from finite element analyses with the analytical results in the elastic range.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.