Open Access
Issue
MATEC Web Conf.
Volume 258, 2019
International Conference on Sustainable Civil Engineering Structures and Construction Materials (SCESCM 2018)
Article Number 05025
Number of page(s) 7
Section Structural Dynamics and Earthquake Engineering, Structures in Severe Environment, Structural Analysis
DOI https://doi.org/10.1051/matecconf/201925805025
Published online 25 January 2019
  1. Y. Zhang, C. Xu, X. Lu, Experimental Study of Hysteretic Behaviour for Concrete-filled Square Thin-walled Steel Tubular Columns. Journal of Constructional Steel Research, 63(3), 317–325, (2007) [CrossRef] [Google Scholar]
  2. Y. C. Tang, L. J. Li, W. X. Feng, F. Liu, B. Liao. Seismic Performance of Recycled Aggregate Concrete-filled Steel Tube Columns. Journal of Constructional Steel Research, 133, 112–124, (2017) [CrossRef] [Google Scholar]
  3. X. S. Shi, Q. Y. Wang, X. L. Zhao, F. G. Collins. Structural Behaviour of Geopolymeric Recycled Concrete-Filled Steel Tubular Columns under axial loading. Construction and Building Materials, 81, 187–197, (2015). [CrossRef] [Google Scholar]
  4. J. M. Cai, J. L. Pan, Y. F. Wu. Performance of Steel-reinforced Square Concrete-filled Steel Hollow Section (SRSCFSHS) Columns under Uniaxial Compression. Advanced Steel Construction, 12(4), 410–427, (2016). [Google Scholar]
  5. Y. F. An, L. H. Han, C. Roeder. Flexural Performance of Concrete-encased Concrete-filled Steel Tubes. Magazine of Concrete Research, 66(5), 249–267, (2014). [CrossRef] [Google Scholar]
  6. G. Li, D. Liu, Z. Yang, C. Zhang. Flexural Behavior of High Strength Concrete Filled High Strength Square Steel Tube. Journal of Constructional Steel Research, 128, 732–744, (2017). [CrossRef] [Google Scholar]
  7. C. C. Hou, L. H. Han, Q. L. Wang, C. Hou. Flexural behavior of circular concrete-filled steel tubes (CFST) under sustained load and chloride corrosion. Thin-Walled Structures, 107, 182–196, (2016). [CrossRef] [Google Scholar]
  8. M. Elchalakani, X. L. Zhao, R. Grzebieta. Concrete-filled Circular Steel Tubes Subjected to Pure Bending. Journal of Construction Steel Research, 57:1141–1168, (2000). [Google Scholar]
  9. A. Karrech, M. Elchalakani, H. Basarir. Finite Element Modelling of Concrete Filled Steel Tubes Subjected to Static Pure Bending. In H. Hao, & C. Zhang (Eds.), Mechanics of Structures and Materials XXIV: Proceedings of the 24th Australian Conference on the Mechanics of Structures and Materials (Vol. 1, pp. 143–148). London, (2017). [Google Scholar]
  10. F. K. Idan. Finite Element Analysis of Concrete-filled Aluminum tube columns. International Journal of Applied Engineering Research, 12(12), 3054–3062, (2017). [Google Scholar]
  11. S. Arivalagan, S. Kandasamy. Finite element analysis on the flexural behaviour of concrete filled steel tube beams. Journal of Theoretical and Applied Mechanics, 48(2), 505–516, (2010). [Google Scholar]
  12. Z. Ting, C. Zhihua, L. Hongbo. Nonlinear finite element analysis of concrete-filled steel tubular column. In Electric Technology and Civil Engineering (ICETCE), 2011 International Conference on (pp. 2396–2399). IEEE, (2011). [CrossRef] [Google Scholar]
  13. P. K. Gupta, H. Singh. Numerical study of confinement in short concrete-filled steel tube columns. Latin American Journal of Solids and Structures, 11(8), 1445–1462, (2014). [CrossRef] [Google Scholar]
  14. M. H. Mollazadeh, & Wang, Y. C. (2014). New insights into the mechanism of load introduction into concrete-filled steel tubular column through shear connection. Engineering Structures, 75, 139–151. [CrossRef] [Google Scholar]
  15. MSC. MARC. User’s Guide, MSC. Software Corporation, (2012). [Google Scholar]
  16. A. Kawano, R.F. Warner. Nonlinear Analysis of the Time-Dependent Behaviour of Reinforced Concrete Frames, Research Report No. R125, Department of Civil and Environmental Engineering, the University of Adelaide, (1995) [Google Scholar]
  17. Y. Bai, X. Lin, B. Mou. Numerical modeling on post-local buckling behavior of circular and square concrete-filled steel tubular beam columns. International Journal of Steel Structures, 16(2), 531–546, (2016). [CrossRef] [Google Scholar]
  18. M. K. Effendi, A. Kawano. A study on the static and impact structural behavior of concrete filled steel tubular members under Tsunami flotsam collision. In AIP Conference Proceedings (Vol. 1818, No. 1, p. 020011). AIP Publishing, (2017). [CrossRef] [Google Scholar]
  19. MSC. MARC. Marc 2012 Volume B, MSC. Software Corporation, (2012). [Google Scholar]
  20. MSC. MARC. Marc 2012 Volume A, MSC. Software Corporation, (2012). [Google Scholar]
  21. M. Menegotto, P. E. Pinto, Method of Analysis for Cyclically Loaded R. C. Frames Including Changes in Geometry and Non-elastic Behaviour of Elements under Combined Normal Force and Bending, IABSE Congress Reports of the Working Commission, Band 13, (1973). [Google Scholar]
  22. Architectural Institute of Japan (AIJ). Recommendations for design and construction of concrete-filled steel tubular structures, (2008). (in Japanese) [Google Scholar]
  23. F. Alhussainy, M. N. Sheikh, M. N. Hadi. Behaviour of Small Diameter Steel Tubes Under Axial Compression. In Structures, Vol. 11, pp. 155–163, (2017). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.