Issue |
MATEC Web Conf.
Volume 258, 2019
International Conference on Sustainable Civil Engineering Structures and Construction Materials (SCESCM 2018)
|
|
---|---|---|
Article Number | 01012 | |
Number of page(s) | 8 | |
Section | Green Construction Materials and Technologies, Environmental Impact and Green Design, Local and Recycled Materials | |
DOI | https://doi.org/10.1051/matecconf/201925801012 | |
Published online | 25 January 2019 |
Adhesion characteristics of geopolymer mortar to concrete and rebars
1 Department of Architecture, College of Engineering, Nihon University, Koriyama 963-8642, Japan
2 Department of Environmental Engineering and Architecture, Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan
* Corresponding author: pareek@arch.ce.nihon-u.ac.jp
In recent years, geopolymers have gained a wide attention as highly ecological-friendly building materials, having a capability to cut down 70% of CO2 emissions in comparison to the ordinary cement concrete. In this study, geopolymer mortars are proposed as repair materials for reinforced concrete structures, due to their superior acid resistance, heat resistance and high strength in comparison to the existing repair materials. The objective of this study is to investigate the adhesion properties of geopolymer mortars to concrete substrates with different surface treatments, steel plates and rebars. As a result, the geopolymer mortars are found to have excellent adhesion properties to dry concrete substrates, steel plates and rebars. Concrete substrates treated with grinder, further enhanced the adhesion properties of geopolymer mortars. On the other hand, poor adhesion of geopolymer mortars to wet concrete substrates was observed due to the presence of water on the interfacial zone, which decreased the alkali concentration of the geopolymer, resulting in lower adhesion strength. In general, geopolymer mortars are found to have suitable adhesion properties to the concrete substrates, steel plates and rebars and can be applied as repair materials for reinforced concrete structures.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.