Issue |
MATEC Web Conf.
Volume 256, 2019
The 5th International Conference on Mechatronics and Mechanical Engineering (ICMME 2018)
|
|
---|---|---|
Article Number | 02006 | |
Number of page(s) | 6 | |
Section | Mechanical and Control Engineering | |
DOI | https://doi.org/10.1051/matecconf/201925602006 | |
Published online | 23 January 2019 |
Research on the Influence of Piston Constraint on the Temperature Field of Multi-disc Clutch
School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R.China
The two-dimensional finite element model of multi-disc clutch friction pair was established by Abaqus simulation software, and the contact pressure of the friction surface under different piston constraints was calculated and analyzed. Considering contact pressure as the main heat-generating factor, the two-dimensional heat conduction process was numerically discretized by the implicit difference method. Then the temperature model of the multi-disc clutch friction pair was programmed in Matlab. The bench test verified the correctness of the temperature model. It is found that the temperature field between components is different and shows uneven distribution under the actual constraint. The local temperature of the component near the concentrated load is the highest, in which the radial temperature difference is the largest. The arrangement in which the piston pressure is concentrated in middle diameter produces the lowest temperature and the smallest radial temperature difference, which can effectively avoid thermal deformation of the component due to uneven temperature distribution.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.