Issue |
MATEC Web Conf.
Volume 240, 2018
XI International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2018)
|
|
---|---|---|
Article Number | 05035 | |
Number of page(s) | 5 | |
Section | Mathematical Modeling in the Energy and Industrial Processes | |
DOI | https://doi.org/10.1051/matecconf/201824005035 | |
Published online | 27 November 2018 |
Influence of selected cycle components parameters on the supercritical CO2 power unit performance
Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21 Street 00-665 Warsaw, Poland
* Corresponding author: marcin.wolowicz@itc.pw.edu.pl
The paper presents the influence of selected components parameters on the performance of supercritical carbon dioxide power unit. For this analysis mathematical model of supercritical recompression Brayton cycle was created. The analysis took into consideration changes in the net cycle power and efficiency for different compressor inlet temperatures. The results were obtained for a fixed minimum pressure of 7.4 MPa and fixed recompression split ratio. The studies conducted in this paper included also consideration of sensitivity of the cycle efficiency to a change in recuperators heat transfer area. In order to determine how each recuperator influences the cycle performance, an analysis of efficiency dependence on the recuperators area was made. Another parameters that were investigated are to a change in turbine and compressors isentropic efficiency and their influence on the cycle efficiency. In the reference cycle, isentropic efficiencies were set up as 88% for both the main and recompression compressor, and 90% for the turbine. Since isentropic efficiency is a sort of measure of broadly defined quality of a turbine or compressor, including airfoil shape, sealing, etc., it may be a significant cost factor that should be considered during cycle design. Therefore, a sensitivity analysis of cycle efficiency to both compressors and turbine isentropic efficiencies was conducted.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.