Issue |
MATEC Web Conf.
Volume 233, 2018
8th EASN-CEAS International Workshop on Manufacturing for Growth & Innovation
|
|
---|---|---|
Article Number | 00031 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/matecconf/201823300031 | |
Published online | 21 November 2018 |
Wire-arc additive manufacturing of Al-Mg alloy using CMT and PMC technologies
1
Instituto de Soldadura e Qualidade, 2740-120 Porto Salvo, Portugal
2
Universidade Federal do Rio de Janeiro, PEMM, 21941-972 Rio de Janeiro, RJ, Brasil
* e-mail: biancagomes@poli.ufrj.br
Among the several metallic additive manufacturing (MAM) technologies available, the wire-and-arc based ones are very beneficial due to the lower operational costs, higher efficiency use of raw materials, and high deposition rates achieved. The Cold Metal Transfer (CMT) process stands out by the lower heat input compared to the other wire-and-arc based methods. On the other hand, processes such as Pulse Multi Control (PMC) and its variants have not been tested yet in additive manufacturing and for this reason they should be evaluated. Therefore, considering the technologies potential and the need of automotive and aeronautical industry of manufacturing parts of complex and optimized geometry in a faster way, the study of these technologies is very relevant. Thus, the objective of this paper is the additive manufacturing of walls with Al-Mg alloy using CMT, CMT-Pulse, PMC, PMC-Mix, and MIG-Pulse, and the evaluation of the hardness, mechanical strength, and porosity of the manufactured parts aiming future industrial applications. The results showed good mechanical properties, small pore fraction, and geometric uniformity of parts produced with PMC and PMC-Mix. MIG-Pulse and PMC parts presented the smaller pore fraction among the GMAW variants, although no difference was noticed in the mechanical properties of the parts.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.