Issue |
MATEC Web Conf.
Volume 326, 2020
The 17th International Conference on Aluminium Alloys 2020 (ICAA17)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 5 | |
Section | Plenary Lecture & ECR Award Recipients | |
DOI | https://doi.org/10.1051/matecconf/202032601003 | |
Published online | 05 November 2020 |
In situ alloying of aluminium-based alloys by (multi-)wire-arc additive manufacturing
LKR Light Metals Technologies Ranshofen, Austrian Institute of Technology, 5282 Ranshofen, Austria
* Corresponding author: thomas.klein@ait.ac.at
Wire-arc additive manufacturing (WAAM) has received considerable attention in the past years due to advantages in terms of deposition rate, design freedom, buy-to-fly ratio and economic factors. This process can generally be conducted using conventional or near-conventional welding equipment to fabricate intricate but relatively large-scale structures. The present contribution explores options to utilize this novel process not only for manufacturing of particular aluminium structures, but to create the actual alloy composition during processing. Thereby, the possibilities of dual-wire techniques based on cold metal transfer (CMT) to create alloys in the welding process in situ is investigated. For this purpose, a modified CMT twin welding system is used with standard wires differing significantly in their alloying content. The characterization of the chemical compositions at different specimen positions suggests good chemical homogeneity after initial process optimization steps. The microstructural homogeneity is analysed by means of optical light microscopy and scanning electron microscopy. Quantified phase fractions underpin non-equilibrium solidification conditions, when compared to theoretical equilibrium predictions. The assessment of the performed analyses suggests that dual-wire processes are powerful in terms of enhancing achievable depositions rates as well as enabling in situ alloying. This approach might be expandable to multi-wire-based techniques.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.