Issue |
MATEC Web Conf.
Volume 233, 2018
8th EASN-CEAS International Workshop on Manufacturing for Growth & Innovation
|
|
---|---|---|
Article Number | 00019 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/matecconf/201823300019 | |
Published online | 21 November 2018 |
Multifunctional and lightweight load-bearing composite structures for satellites
1
Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University, 52062 Aachen, Germany
2
Fraunhofer Institute for Structural Durability and System Reliability LBF, Division of Smart Structures, 64289 Darmstadt, Germany
* e-mail: martin.schubert@sla.rwth-aachen.de
Within the framework of the German national project multiSat multifunctional composite structures for satellite applications are developed. The objective is the integration of passive and active functions into the load-bearing spacecraft structure by using suitable materials, components and mechanisms. The passive functions include heat transfer, radiation shielding and protection against space debris impacts, whereas the active functions comprise electric energy and data transfer and vibration reduction. Due to their multi-layer build-up composite materials are suitable for functional integration since each layer can be defined and designed to provide one or more specific functions. The concept of a multifunctional structure allows for the reduction of the overall satellite mass and of installation space required for subsystems. It also opens up new opportunities for highly integrative and standardized production processes and lower total costs and time for manufacturing, qualification and launch. This paper describes the development and design of a concept for a multifunctional sandwich panel and the results of the analyses, numerical simulations and experiments conducted at coupon level.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.